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Bayesian inference

Let § € © C R* with posterior distribution

_ f(y|9)p(6)
PO = 5 0)p(8)d6

Bayesian inference on 6 requires the computation of features of p(6|y)
taking the general form

ER()y] = | HE)p(6ly)de
for a given function h, e.g. h(6) = 6 to compute the posterior mean.

e Often computing p(8|y) is intractable and we can only evaluate
f(y10)p(6)
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Introduction
Even though we cannot integrate p(6|y), can we sample from it?
e |f so, a sufficiently large sample
oM . 6M 2 ply)
would provide estimates
1 (M ~
R (6'™) ~ Eln@)ly]

e MCMC methods produce oV 0™ as a chain where 9™ only
depends on p(m-1) (Markov property)

o This is an ergodic Markov chain with stationary distribution p(6]y)
o The ergodic theorem ensures

1 M
=5 h(6™) L5 E[A6)ly], asM — oo
i 2= (o)

o Only requires the ability to compute f(y|6)p(0)
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Markov chains (l)

A Markov chain with continuous state space © is a stochastic process
{G(t)}tzo that is fully characterized by

@ Initial condition density function p,

@® Markov property

Pl e Bl6,....00] = p[o ¢ Bl Y]

® Transition kernel

P[6") € Blo“ V] = /BK (616 ) do
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Markov chains (ll)
Important properties Markov chains might satisfy are
e Existence of a unique stationary distribution p such that
p(0) = /eK (016)p(6)do' <« 6~p if 6 ~p
e Convergence to the stationary distribution for every density p, (i.e.

ergodicity)
t|l>ngo llpe — pllry =0

e Approximation by averages via the ergodic theorem

1T
=5 h(6W) 25 End)], asT — oo
T;( ) 2 Eh©)], asT -
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MCMC methods

An MCMC method for p(:|y) is any method producing an ergodic
Markov chain {G(t)}tzo whose stationary distribution is p(-|y).

e These methods differ in the way they construct transition kernels
k(-|0) with stationary distribution p(-|y)

@ Metropolis-Hastings algorithm

@® Gibbs sampling

e Given an initial value 8%, a Markov chain {9“)}t>0 is then
generated via k a

o Ergodicity ensures that the starting value is-in
principle-unimportant
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The MH algorithm

e Requirements

o p(fly) « f(y|0)p(6)
o A chosen proposal distribution q(-|68) to draw candidates 6™

e Algorithm: given M and an initial value 9(0), form=1,... M
@ Draw 6" ~ g (-|0(’"_1))
@ Set
6", W.p. p (9*,0("'*1)),
olm) _
p(m=1), wp. 1—p (9*, 9('"_1)>,

where
- f (y|9*) p (9*)(] (e(m—l)le*)

) (9*, 0(m71)> = min { . (ylo(m_l)) p (9(m—1))q (e*|e(m—1)) ' 1}
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The Metropolis-Hastings algorithm

Implementation details

e Choosing q(+|6)

o Intuitively, need it to draw candidates in the high density regions of

© often enough
o A popular choice is a (symmetric) random walk proposal

0* =0""Y te £~ N(0X)

o In practice, one tries several proposal distributions and monitors
rejection rates

e Choosing ()
o Matters for approximations since in practice M is finite
o Burn-in (discarding the first M, draws) is a popular choice

e Thinning (only retaining every d-th iteration to reduce
autocorrelation) is useful when memory-constrained
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Example: linear regression with known variance

e Likelihood model

Yilxii Bo, B1 ~ N (Bo + B1xi, 1)

B 1 10 0
()~ (()-(5 )
e Proposal density
g\ (pmY 0\ (0.0l 0
()= (3n) = e ((3)-(5" o52))

e Prior
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Example: code (I)

function val = 1llikelihood(y, x, params)
bé = params(1);
bl = params(2);

% Get predictions
pred = b8 + bl * x;
indiv_1like = normpdf(y, pred, 1);
indiv_11 = log(indiv_like);
val = sum(indiv_11);
end

function val = lprior(params)
bé = params(1);
bl = params(2);

% Prior on b@;
bé_prior = normpdf(be, 1, 18);
bl prior = normpdf(bl, 1, 5);

% Prior
val = log(b@_prior) + log(bl_prior);
end

function val = unnorm_lpost(y, x, params)

val = 1likelihood(y, x, params) + lprior(params);
end
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Example: code (ll)

% MH Parameters
burn = 5@ee;
M = 5000;

chain = NaN(2, burn + M);
chain(:, 1) = [1; 1];
accept = NaN(1, burn + M);

for m = 2:(burn + M)
% Proposal
proposal = chain{:, m - 1) + mvnrnd([@; @], [@.01, @;
e, 0.01])";

% Acceptance probability

rho = exp(unnorm_lpost(y, X, proposal) - unnorm_lpost(y, x, chain(:, m - 1)));
rho = min(1, rho);

% Update

if rand(1) <= rho
chain(:, m) = proposal;
accept(m) = 1;

else
chain(:, m) = chain(:, m - 1);
accept(m) = @;

end

end

% Acceptance ratio
mean(accept(:, burn+l:end))
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Example: posteriors
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Gibbs sampling

e Requirements

o Access to conditional posterior distributions
- Partition 6 into (64, 6,)
- Denote conditional posteriors as p(6;|6,; y) and p(6,|61; y)

e Algorithm: given M and an initial value 0&0), form=1,... M
@ Draw 6" ~ p(-[6{" "V y)

@ Draw 6] ~ p((6";y)

e Generalizes to a partition 6 = (64, ..., 04)
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Example: linear regression with independent priors

e Likelihood model 8 = (B, B1)'
y,-IX,-; B~ N(X,'ﬁ, ‘72)
e Priors

B~ N (Bo Xo)

o ~ Inv-Gamma (ag, by)

where 3y > 0 and by > 0 are the shape and scale parameters
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Gibbs sampling
e Conditional posteriors
2
Blo“y ~ N (B1. X1)
o°|B;y ~ Inv-Gamma (ay, by )

with
1 -1
T = <zgl + 2X’X>
g
1 1\ 5
Br=2 (Zo Bo + <02X X) 5)
B=(X'X)X'y

31254-30

-1

b= (4 + 50 - XB) (v~ x8)
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Example: code (l)

% Prior hyperparameters
betad = [1; 1];

Sigma@ = [2, @; @, 2];
ag = 1;

be = 1;

% OLS coefficient
beta_ols = (X" * X) \ X" * y;
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Example: code (ll)

% Gibbs Sampler

burn = 5@e0;

M = 5800;

chain = NaN(3, burn + M);

chain(1:2, 1) = beta_ols;

for m = 2:(burn + M)
% Draw sigma_sq conditional on beta
al = (N / 2) + a8;
bl = (1 / be) + 8.5 * (y - X * chain(1:2, m - 1))" * (y - X * chain(1:2, m - 1));
bl =1 / b1;
chain(3, m) = 1 / gamrnd(al, bl);

% Draw beta conditional on sigma_sq
Sigmal = pinv(pinv(Sigma®) + X" * X / chain(3, m));
betal = Sigmal * (pinv(Sigma@) * beta® + X' * X * beta_ols / chain(3, m));
chain(1:2, m) = mvnrnd(betal, Sigmal)';
end
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Example: posteriors
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Discussion

e Assessing convergence

o Some recommendations

- Monitor rejection rates (if applicable)
- Check sensitivity to starting values and tune-in parameters
- Plot!

o Diagnostics can only reliably be used to determine lack of
convergence

e Improper posteriors

e Further topics

o Other algorithms: slice sampling, Metropolis-within-Gibbs...
o Geweke (2004)
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