#### Markov Chain Monte Carlo methods

Víctor Sancibrián<sup>1</sup>

**CEMFI** 

February 20, 2023

<sup>&</sup>lt;sup>1</sup>These notes build on previous versions by Martín Almuzara and Micole De Vera.

#### **Bayesian inference**

Let  $\theta \in \Theta \subset \mathbb{R}^k$  with posterior distribution

$$p(\theta|y) = \frac{f(y|\theta)p(\theta)}{\int_{\Theta} f(y|\theta)p(\theta)d\theta}.$$

Bayesian inference on  $\theta$  requires the computation of features of  $p(\theta|y)$  taking the general form

$$\mathsf{E}[h(\theta)|y] = \int_{\Theta} h(\theta) p(\theta|y) d\theta$$

for a given function h, e.g.  $h(\theta) = \theta$  to compute the posterior mean.

• Often computing  $p(\theta|y)$  is intractable and we can only evaluate  $f(y|\theta)p(\theta)$ 

#### Even though we cannot integrate $p(\theta|y)$ , can we sample from it?

• If so, a sufficiently large sample

$$\theta^{(1)}, \ldots, \theta^{(M)} \stackrel{a}{\sim} p(\theta|y)$$

would provide estimates

$$\frac{1}{M} \sum_{m=1}^{M} h\left(\theta^{(m)}\right) \approx \mathsf{E}[h(\theta)|y]$$

- MCMC methods produce  $\theta^{(1)}, \dots, \theta^{(M)}$  as a chain where  $\theta^{(m)}$  only depends on  $\theta^{(m-1)}$  (Markov property)
  - This is an ergodic Markov chain with stationary distribution  $p(\theta|y)$
  - The ergodic theorem ensures

$$\frac{1}{M} \sum_{m=1}^{M} h\left(\theta^{(m)}\right) \stackrel{p}{\longrightarrow} \mathsf{E}[h(\theta)|y], \quad \text{as } M \to \infty$$

• Only requires the ability to compute  $f(y|\theta)p(\theta)$ 

#### **Outline**

1 Intro to MCMC methods

Basics: Markov chains

Basics: MCMC

- 2 The Metropolis-Hastings algorithm
- Gibbs sampling
- 4 Discussion

## Intro to MCMC methods

#### Markov chains (I)

A Markov chain with continuous state space  $\Theta$  is a stochastic process  $\{\theta^{(t)}\}_{t\geq 0}$  that is fully characterized by

- 1 Initial condition density function  $p_0$
- 2 Markov property

$$\mathsf{P}\!\left[ heta^{(t)}\in B\Big|oldsymbol{ heta}^{(t-1)},\ldots,oldsymbol{ heta}^{(0)}
ight]=\mathsf{P}\!\left[oldsymbol{ heta}^{(t)}\in B\Big|oldsymbol{ heta}^{(t-1)}
ight]$$

3 Transition kernel  $\kappa$ 

$$\mathsf{P}\Big[ heta^{(t)} \in \mathcal{B}\Big| heta^{(t-1)}\Big] = \int_{\mathcal{B}} \kappa\left( heta| heta^{(t-1)}
ight)d heta$$

#### Markov chains (II)

#### Important properties Markov chains might satisfy are

• Existence of a unique stationary distribution p such that

$$p(\theta) = \int_{\Theta} \kappa \left( \theta | \theta' \right) p \left( \theta' \right) d\theta' \quad \iff \quad \theta \sim p \quad \text{if} \quad \theta' \sim p$$

• Convergence to the stationary distribution for every density  $p_0$  (i.e. ergodicity)

$$\lim_{t\to\infty}||p_t-p||_{TV}=0$$

Approximation by averages via the ergodic theorem

$$\frac{1}{T}\sum_{t=1}^{T}h\left(\theta^{(t)}\right)\overset{p}{\longrightarrow}\mathsf{E}[h(\theta)],\quad\mathsf{as}\;T\to\infty$$

#### MCMC methods

An MCMC method for  $p(\cdot|y)$  is any method producing an ergodic Markov chain  $\{\theta^{(t)}\}_{t>0}$  whose stationary distribution is  $p(\cdot|y)$ .

- These methods differ in the way they construct transition kernels  $\kappa(\cdot|\theta)$  with stationary distribution  $p(\cdot|y)$ 
  - Metropolis-Hastings algorithm
  - 2 Gibbs sampling
- Given an initial value  $\theta^{(0)}$ , a Markov chain  $\{\theta^{(t)}\}_{t\geq 0}$  is then generated via  $\kappa$ 
  - Ergodicity ensures that the starting value is-in principle-unimportant

# The Metropolis-Hastings

algorithm

#### The MH algorithm

- Requirements
  - $\circ p(\theta|y) \propto f(y|\theta)p(\theta)$
  - A chosen proposal distribution  $q(\cdot|\theta)$  to draw candidates  $\theta^*$
- Algorithm: given M and an initial value  $\theta^{(0)}$ , for m = 1, ..., M
  - **1** Draw  $\theta^* \sim q\left(\cdot|\boldsymbol{\theta}^{(m-1)}\right)$
  - 2 Set

$$heta^{(m)} = egin{cases} heta^*, & ext{w.p. } 
ho\left( heta^*, heta^{(m-1)}
ight), \ heta^{(m-1)}, & ext{w.p. } 1 - 
ho\left( heta^*, heta^{(m-1)}
ight). \end{cases}$$

where

$$\rho\left(\theta^{*},\theta^{(m-1)}\right) = \min\left\{\frac{f\left(y|\theta^{*}\right)p\left(\theta^{*}\right)q\left(\theta^{(m-1)}|\theta^{*}\right)}{f\left(y|\theta^{(m-1)}\right)p\left(\theta^{(m-1)}\right)q\left(\theta^{*}|\theta^{(m-1)}\right)},1\right\}$$

#### Implementation details

- Choosing  $q(\cdot|\theta)$ 
  - Intuitively, need it to draw candidates in the high density regions of
     ⊖ often enough
  - A popular choice is a (symmetric) random walk proposal

$$heta^* = heta^{(m-1)} + arepsilon, \quad arepsilon \sim \mathcal{N}(0, \Sigma)$$

- In practice, one tries several proposal distributions and monitors rejection rates
- Choosing  $\theta^{(0)}$ 
  - Matters for approximations since in practice M is finite
  - $\circ$  Burn-in (discarding the first  $M_0$  draws) is a popular choice
- Thinning (only retaining every d-th iteration to reduce autocorrelation) is useful when memory-constrained

#### **Example: linear regression with known variance**

Likelihood model

$$y_i|x_i; \beta_0, \beta_1 \sim \mathcal{N}(\beta_0 + \beta_1 x_i, 1)$$

Prior

$$egin{pmatrix} eta_0 \ eta_1 \end{pmatrix} \sim \mathcal{N}\left(egin{pmatrix} 1 \ 1 \end{pmatrix}$$
 ,  $egin{pmatrix} 10 & 0 \ 0 & 5 \end{pmatrix} 
ight)$ 

Proposal density

$$\begin{pmatrix} \beta_0^* \\ \beta_1^* \end{pmatrix} = \begin{pmatrix} \beta_0^{(m-1)} \\ \beta_1^{(m-1)} \end{pmatrix} + \epsilon, \quad \epsilon \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0.01 & 0 \\ 0 & 0.01 \end{pmatrix}\right)$$



#### Example: code (I)

```
function val = llikelihood(y, x, params)
    b0 = params(1);
    b1 = params(2):
    % Get predictions
    pred = b0 + b1 * x:
    indiv like = normpdf(y, pred, 1);
    indiv ll = log(indiv like);
    val = sum(indiv ll);
end
function val = lprior(params)
    b0 = params(1);
    b1 = params(2);
    % Prior on b0;
    b0 prior = normpdf(b0, 1, 10);
    b1 prior = normpdf(b1, 1, 5);
    % Prior
    val = log(b0 prior) + log(b1 prior);
end
function val = unnorm lpost(y, x, params)
    val = llikelihood(v, x, params) + lprior(params);
end
```

#### Example: code (II)

```
% MH Parameters
burn = 5000;
M = 5000;
chain = NaN(2, burn + M);
chain(:, 1) = [1; 1];
accept = NaN(1, burn + M);
for m = 2:(burn + M)
   % Proposal
   proposal = chain(:, m - 1) + mvnrnd([0; 0], [0.01, 0;
                                                 0, 0.01])';
   % Acceptance probability
    rho = exp(unnorm_lpost(y, x, proposal) - unnorm_lpost(y, x, chain(:, m - 1)));
    rho = min(1, rho);
   % Update
   if rand(1) <= rho
        chain(:, m) = proposal:
        accept(m) = 1:
    else
        chain(:, m) = chain(:, m - 1);
        accept(m) = 0;
   end
end
% Acceptance ratio
mean(accept(:, burn+1:end))
```

#### **Example: posteriors**



# Gibbs sampling

### Gibbs sampling

- Requirements
  - Access to conditional posterior distributions
    - Partition  $\theta$  into  $(\theta_1, \theta_2)$
    - Denote conditional posteriors as  $p(\theta_1|\theta_2; y)$  and  $p(\theta_2|\theta_1; y)$
- Algorithm: given M and an initial value  $\theta_1^{(0)}$ , for  $m=1,\ldots,M$ 
  - **1** Draw  $\theta_2^{(m)} \sim p(\cdot|\theta_1^{(m-1)};y)$
  - 2 Draw  $\theta_1^{(m)} \sim p(\cdot|\theta_2^{(m)};y)$
- Generalizes to a partition  $\theta = (\theta_1, \dots, \theta_d)$

#### **Example: linear regression with independent priors**

• Likelihood model  $\beta = (\beta_0, \beta_1)'$ 

$$y_i|X_i; \beta \sim \mathcal{N}(X_i\beta, \sigma^2)$$

Priors

$$eta \sim \mathcal{N}\left(eta_0, \Sigma_0
ight) \ \sigma^2 \sim \mathsf{Inv} ext{-}\mathsf{Gamma}\left(a_0, b_0
ight)$$

where  $a_0 > 0$  and  $b_0 > 0$  are the shape and scale parameters



#### Conditional posteriors

$$eta|\sigma^2$$
;  $y \sim \mathcal{N}\left(eta_1, \Sigma_1
ight)$ 
 $\sigma^2|eta$ ;  $y \sim \mathsf{Inv} ext{-}\mathsf{Gamma}\left(a_1, b_1
ight)$ 

with

$$\Sigma_{1} = \left(\Sigma_{0}^{-1} + \frac{1}{\sigma^{2}}X'X\right)^{-1}$$

$$\beta_{1} = \Sigma_{1}\left(\Sigma_{0}^{-1}\beta_{0} + \left(\frac{1}{\sigma^{2}}X'X\right)\hat{\beta}\right)$$

$$\hat{\beta} = \left(X'X\right)X'y$$

$$a_{1} = \frac{N}{2} + a_{0}$$

$$b_{1} = \left(\frac{1}{b_{0}} + \frac{1}{2}(y - X\beta)'(y - X\beta)\right)^{-1}$$

#### Example: code (I)

```
% Prior hyperparameters
beta0 = [1; 1];
Sigma0 = [2, 0; 0, 2];
a0 = 1;
b0 = 1;

% OLS coefficient
beta_ols = (X' * X) \ X' * y;
```

#### Example: code (II)

```
% Gibbs Sampler
burn = 5000;
M = 5000:
chain = NaN(3, burn + M);
chain(1:2, 1) = beta ols;
for m = 2:(burn + M)
    % Draw sigma sq conditional on beta
    a1 = (N / 2) + a0;
    b1 = (1 / b0) + 0.5 * (y - X * chain(1:2, m - 1))' * (y - X * chain(1:2, m - 1));
    b1 = 1 / b1;
    chain(3, m) = 1 / gamrnd(a1, b1);
    % Draw beta conditional on sigma sq
    Sigma1 = pinv(pinv(Sigma0) + X' * X / chain(3, m));
    beta1 = Sigma1 * (pinv(Sigma0) * beta0 + X' * X * beta ols / chain(3, m));
    chain(1:2, m) = mvnrnd(beta1, Sigma1)';
end
```

#### **Example: posteriors**



### **Discussion**

#### **Discussion**

- Assessing convergence
  - Some recommendations
    - Monitor rejection rates (if applicable)
    - Check sensitivity to starting values and tune-in parameters
    - Plot!
  - Diagnostics can only reliably be used to determine lack of convergence
- Improper posteriors
- Further topics
  - o Other algorithms: slice sampling, Metropolis-within-Gibbs...
  - Geweke (2004)