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RESUMEN

El uso de microdatos tiene una larga tradición en el trabajo empírico en economía, y entre sus hallazgos prin-
cipales se encuentra la amplia heterogeneidad que existe en el comportamiento observado de los agentes. En
paralelo, la literatura econométrica ha evolucionado para abordar algunos de los problemas metodológicos
que surgen al analizar microdatos y al tratar o documentar la heterogeneidad. A pesar de estos esfuerzos,
muchas preguntas continúan abiertas, alimentadas por el constante desarrollo de la investigación empírica.

En esta tesis, abordo algunas cuestiones metodológicas que surgen en contextos de microdatos ricos,
los cuales aparecen de manera natural al trabajar con formas modernas de microdatos, como los censos o los
datos administrativos o encuestas extensas que incluyen nuevas mediciones económicas. Como se verá, estos
entornos suponen retos importantes para la teoría econométrica, con la heterogeneidad como un factor cen-
tral de los mismos. Dichos retos abarcan desde la inferencia estadística y la cuantificación de incertidumbre
hasta la identificación y estimación de modelos económicos con nuevos tipos de datos.

En particular, estudio aquí tres de estos contextos: entornos de población finita, donde todas (o la may-
oría de) las unidades de interés se muestrean; la econometría de shocks agregados al usar microdatos para
responder preguntas macro; y el uso de nuevas medidas económicas como datos de expectativas subjetivas.
La heterogeneidad microeconómica está íntimamente ligada a estos temas: se conecta con la forma en que
concebimos la aleatoriedad en los datos, define los objetos poblacionales que podemos recuperar, y orienta
el desarrollo de nuevas formas de documentar y resumir regularidades empíricas.

En el Capítulo 1, presento brevemente estos temas en el marco de un modelo simple de coeficientes
aleatorios para datos de panel. De hecho, un tema recurrente a lo largo de la tesis es que la disponibilidad de
observaciones repetidas permite desarrollar métodos econométricos prácticos para abordar estas cuestiones.

En el Capítulo 2 (Estimation uncertainty in repeated finite populations), estudio las situaciones de población
finita —aquellas donde la muestra es una fracción significativa de la población de interés—, que se dan fre-
cuentemente con datos censales o administrativos, como aquellos que contienen registros casi universales
de empresas o trabajadores. Considero el caso empíricamente relevante de una población finita que coexiste
con un problema de medición, de modo que las características de interés no son necesariamente observables
aún cuando se muestree la población completa. La práctica convencional en estos entornos consiste en direc-
tamente no comunicar mediciones de incertidumbre estadística o en proceder como si la muestra fuese una
fracción infinitesimal de una superpoblación hipotética. En este capítulo, muestro que esto o bien ignora
el problema de medición, o bien conduce a inferencia conservadora, en un grado que depende de cuánta
heterogeneidad poblacional exista en dichas características latentes de interés.
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A continuación, propongo Correcciones de Población Finita (Finite Population Corrections, FPCs) que
garantizan inferencia no conservadora cuando se dispone de mediciones repetidas. Las FPCs requieren de-
pendencia débil entre mediciones, como la que implican procesos de medias móviles, y son muy fáciles de
implementar mediante restricciones de covarianza. Finalmente, aplico estos métodos a dos contextos em-
píricos donde la incertidumbre se ha venido entendiendo de distintas maneras: la predicción de encuentros
letales con la policía usando datos de todos los departamentos policiales de EE.UU., y el estudio de la asig-
nación ineficiente de inputs de empresas con un censo de empresas grandes en Indonesia. La inferencia de
población finita produce intervalos de confianza hasta un 50% más cortos en el primer caso y muestra la
necesidad de incorporar la incertidumbre de medición en el segundo.

El Capítulo 3, titulado Micro responses to macro shocks, es un trabajo conjunto con Martín Almuzara.
Surge motivado por la creciente literatura empírica sobre la transmisión heterogénea de la incertidumbre
agregada, como los cambios en la política monetaria, a variables microeconómicas. A pesar de su popular-
idad, se sabía poco sobre las propiedades estadísticas de los estimadores de local projections para funciones
impulso-respuesta con datos de panel. De hecho, en nuestra propia revisión de unos cincuenta trabajos em-
píricos recientes, encontramos gran dispersión en cómo se calculan los errores estándar y posturas muy difer-
entes en cuanto al papel de cada dimensión del panel para cuestiones de precisión estadística y la importancia
de la variación agregada en los datos. Motivados por esta observación, consideramos procesos generadores
de datos que permiten una relación señal-ruido de los shocks macro en los microdatos sin restricciones.

Así, caracterizamos los objetos poblacionales cuando las respuestas a impulsos son heterogéneas y pro-
ponemos un método de inferencia con validez uniforme sobre dicha relación señal-ruido. Basta con incluir
rezagos como variables de control y luego agrupar los datos (cluster) a nivel temporal. Complementamos
estos resultados con una aplicación empírica sobre el papel de la heterogeneidad de las empresas y las fric-
ciones financieras en la propagación de la política monetaria, ilustrando cómo los métodos de inferencia más
populares pueden diferir sustancialmente del nuestro, que es (asintóticamente) robusto.

El Capítulo 4, titulado Estimating flexible income processes from subjective expectations data: evidence

from India and Colombia, se basa en un trabajo conjunto con Manuel Arellano, Orazio Attanasio y Sam
Crossman. Comienza con la observación de que muchas encuestas recaban información sobre escenarios
hipotéticos o creencias subjetivas que resultan directamente informativas sobre el riesgo y la incertidumbre
tal como los perciben los hogares. En particular, nos motiva la literatura sobre procesos de ingresos, que
tradicionalmente se basa en las realizaciones efectivas de ingresos para caracterizar el riesgo y la persistencia.

Desarrollamos una metodología para modelar procesos de ingresos cuando se dispone de evaluaciones
probabilísticas subjetivas sobre ingresos futuros, lo que permite estimar de manera flexible las cdf condi-
cionales usando dichas probabilidades y obtener mediciones empíricas de riesgo y persistencia subjetivos.
Luego, aplicamos esta metodología a dos encuestas longitudinales llevadas a cabo en zonas rurales de India y
Colombia. Nuestros resultados indican que los procesos de ingresos lineales se rechazan en favor de versiones
más flexibles en ambos casos; y que las distribuciones subjetivas de ingresos presentan heterocedasticidad,
asimetría condicional y persistencia no lineal.

Finalmente, el Capítulo 5 contiene las Conclusiones de la tesis, donde recapitulo sus principales aportes,
reflexiono sobre los desafíos y oportunidades que plantean los entornos modernos de microdatos y subrayo
la importancia de mantener la heterogeneidad como elemento central en la investigación econométrica.



SUMMARY

Economists have long embraced microdata in empirical research. A central insight from this work is the
widespread heterogeneity in the observed behavior of economic agents. In parallel, the econometrics liter-
ature has evolved to address some of the methodological issues that arise in analyzing microeconomic data
and dealing with or documenting heterogeneity. Despite these efforts, many questions remain open, fueled
by an ever-evolving body of empirical research.

In this thesis, I address some methodological questions posed by rich microdata environments that arise
naturally when dealing with modern forms of microdata, such as census or administrative data or large sur-
veys that include new economic measures. As will become clear, these are challenging environments from
the standpoint of econometric theory, and heterogeneity lies at the core of many of these issues. These range
from questions of statistical inference and valid uncertainty quantification to identification and estimation
of economic models with new types of data.

In particular, here I study three such setups: finite population environments, where all (or most) units of
interest are sampled, the econometrics of aggregate shocks when microdata is used to answer macro questions,
and the use of new economic measures such as subjective expectations data. Microeconomic heterogeneity is
deeply connected to these setups: it is intrinsically linked to the way we think of randomness in our data,
shapes the population-level objects we can recover, and guides the development of new ways to document
and summarize empirical regularities.

I briefly introduce these topics in Chapter 1 through the lens of a simple panel data random coefficients
model. Indeed, a recurrent theme throughout the thesis is that the availability of repeated observations for
the same units helps us develop new, practical econometric methods to address these questions.

In Chapter 2 (Estimation uncertainty in repeated finite populations), I study finite population setups —
those where the sample is a large fraction of the population of interest. This is a prevalent feature of many
census or administrative datasets, such as those containing nearly universal records of firms or workers. I
consider the empirically relevant case where a finite population coexists with a measurement problem, in
that the features of interest are not necessarily observable even if the entire population is sampled. Conven-
tional practice in these setups is to either ignore uncertainty quantification altogether or proceed as if the
sample were an infinitesimal fraction of a hypothetical superpopulation. I show that this either disregards
the presence of a measurement problem or results in conservative inference, the extent to which depends on
how heterogeneous these latent features of interest are in the population.

Then, I propose Finite Population Corrections (FPCs) that guarantee non-conservative inference when
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repeated measurements are available. FPCs rely on weak dependence across measurements, such as that im-
plied by moving-average processes, and are very easy to implement through covariance restrictions. Finally, I
apply these methods to two empirical settings where uncertainty has been previously understood in different
ways: predicting lethal encounters with police using data on all U.S. police departments, and studying firm
misallocation with a census of large Indonesian firms. Finite-population inference leads to confidence inter-
vals that are up to 50% shorter in the former and illustrates the need to account for measurement uncertainty
in the latter.

Chapter 3 is titled Micro responses to macro shocks and is based on joint work with Martín Almuzara.
This is motivated by the increasing empirical literature on the heterogeneous transmission of aggregate un-
certainty, such as changes in monetary policy, to microeconomic outcomes. Despite its popularity, little was
known about the statistical properties of panel local projections estimators of impulse responses in this con-
text. Indeed, in our own survey of around fifty recent empirical papers, we document large dispersion in the
way practitioners compute standard errors and vastly different stances on the role of each dimension of the
panel for precision and the importance of aggregate variation in the data. Motivated by this observation, we
consider data generating processes that allow for an unrestricted signal-to-noise ratio of macro shocks in the
microdata.

We characterize the population objects when impulse responses are heterogeneous and provide a recipe
for uniformly valid inference over signal-to-noise. This simply entails including lags as controls and then
clustering at the time level. We complement our results with an empirical application to the role of firm het-
erogeneity and financial frictions in the propagation of monetary policy and illustrate how popular inference
alternatives can deviate substantially from our (asymptotically) robust procedure.

Chapter 4 is titled Estimating flexible income processes from subjective expectations data: evidence from In-

dia and Colombia and is based on joint work with Manuel Arellano, Orazio Attanasio and Sam Crossman.
It starts with the observation that many questions in household surveys elicit information on hypothetical
scenarios or subjective beliefs that are directly informative about risk and uncertainty as perceived by house-
holds. In particular, we are motivated by the literature on income processes, which has long relied on income
realizations to characterize income risk and persistence.

We develop a methodology for modeling household income processes when subjective probabilistic as-
sessments of future income are available, which allows us to flexibly estimate conditional cdf s directly using
elicited individual subjective probabilities, and to obtain empirical measurements of subjective risk and per-
sistence. We then use two longitudinal surveys collected in rural India and rural Colombia to explore the
nature of income dynamics in those contexts. Our results suggest linear income processes are rejected in
favor of more flexible versions in both cases; subjective income distributions feature heteroskedasticity, con-
ditional skewness, and nonlinear persistence.

Finally, Chapter 5 contains the Conclusions of the thesis. Here I revisit its main contributions, reflect on
the challenges and opportunities afforded by modern microdata environments, and emphasize the impor-
tance of keeping heterogeneity at the forefront of econometric research.
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CHAPTER 1

INTRODUCTION

Economists have long welcomed the use of microdata, which contains disaggregated information on eco-
nomic agents such as households or firms. The wealth of information provided by large surveys, census or
administrative datasets enables the study of complex relationships among agents, documenting patterns and
regularities among otherwise different units. There is now consensus that heterogeneity in observed behav-
ior is widespread, and explicitly taking it into account has become deeply ingrained for anyone working with
microdata.1

Such data often have a longitudinal structure that tracks the same units over time, and it becomes possible
to learn about dynamic effects or to tell apart permanent unobserved heterogeneity from state dependence.
In parallel, a well-established econometrics literature has laid the foundations for sound statistical analysis,
with an emphasis on modeling and dealing with heterogeneity (Arellano, 2003).

This thesis deals with econometric challenges in rich microdata environments. This does not necessarily
refer to the dimensionality of the data but to its characteristics, to new applications and to new forms of
data, and to how these interact with the potentially heterogeneous nature of the underlying units. Here I
study three such setups: finite population environments, where all (or most) units of interest are sampled,
the econometrics of aggregate shocks when microdata is used to answer macro questions, and the use of new
economic measures such as subjective expectations data. Chapters 2, 3, and 4 deal with each of these topics,
respectively.

In this chapter, I briefly introduce the setup under the umbrella of repeated measurement models. In-
deed, it is the repeated observation of certain features for the same units that helps us develop new, practical
econometric methods to address these methodological challenges. I then summarize some of the particular-
ities of each setup and outline the methodological and empirical contributions of the thesis.

1In his Nobel lecture, Heckman (2001) states “the most important discovery [from the use of microeconomic data is] the
evidence on the pervasiveness of heterogeneity and diversity in economic life”; see also Browning and Carro (2007).
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2 Chapter 1

Repeated measurement models

Consider a setup where the researcher observes outcomesYit and a vector of characteristicsXit (dimXit = q)
for units i = 1, . . . , N and over measurements t = 1, . . . , T , often corresponding to a time dimension. Out-
comes and characteristics are sampled from an unspecified probability distribution and are related according
to

Yit = X ′
itθi + vit , (1.1)

with zero conditional mean errors E
[
vit

��Xi, θi] = 0, where Xi = (Xi1, . . . , XiT )′ are strictly exogenous.

The presence of unit-specific coefficients θi together with the zero conditional mean assumption defines
a random coefficients model in a panel data context. For instance, if q = 2 andXit contains a constant, equa-
tion (1.1) allows for a heterogeneous level and slope in the relationship between Yit and a given characteristic
of interest. Put differently, these can be seen as repeated — but noisy — measurements of θi for each unit.

In the context of equation (1.1), interest is often on the effect of an exogenous change in Xit on Yit sum-
marized by the average partial effect (APE), which can be defined as:

β ≡ E

[
𝜕E

[
Yit

��Xi = x, θi
]

𝜕x′t

]
= E

[
θi
]
, (1.2)

where the outer expectation is taken with respect to the distribution of θi over the population of interest.
Depending on the setup, these partial effects have different economic content and interpretation. Below we
will see three different such cases.

Under a correlated fixed effects approach, where the dependence of θi onXi is left unrestricted, the simple
projection of Yit on Xit will generally not recover the APE; this is often known as fixed effects endogeneity.
If interest is in keeping unit-specific responses unrestricted, one possibility is to average over unit-by-unit
least squares estimators as follows. Assuming that T ≥ q and detX ′

iXi ≠ 0, let

β̂ =
1
N

N∑︁
i=1

(
X ′
iXi

)−1
X ′
iYi, (1.3)

where Yi = (Yi1, . . . , YiT )′. This simple yet powerful tool is referred to as the between-groups estimator
(see, for instance, Arellano and Bonhomme, 2012). To gain additional insight, it is worth decomposing the
estimation error as

β̂ − β =

(
1
N

N∑︁
i=1

θi − β

)
+ 1
N

N∑︁
i=1

(
X ′
iXi

)−1
X ′
i vi, (1.4)

where vi = (vi1, . . . , viT )′. Given the strict exogeneity assumption, it is easy to see that the last term is zero
mean, and so is the first one under mild regularity conditions on sampling. Many of the methodological con-
tributions in this thesis relate to the concentration properties of these two terms in different environments;
namely, how fast their variances shrink as more and more data accumulates. In Chapter 2, I consider the sit-
uation where the analyst has access to a sample that is a non-negligible fraction of the population of interest,
whereas in Chapter 3 I explore estimation and inference in a context APEs to macro-level characteristics Xt
are of interest. In Chapter 4, instead, units are allowed to have different responses depending on the level



INTRODUCTION 3

of the characteristics themselves, and we leverage new measurements of the outcomes of interest to recast
dynamic panel data models into models similar to those introduced here.

Sampling entire populations

In Chapter 2, titled Estimation uncertainty in repeated finite populations, I consider the empirically relevant
case where the sample at hand is a non-negligible fraction of the population of interest. A relevant particular
case is when the entire population is sampled; consider having data on all 50 U.S. states or drawing nearly
universal records on firms or workers.

This is clearly not the textbook case where the data are treated as an infinitesimal sample from a much
larger, hypothetical superpopulation. In fact, it is intuitive to expect sampling uncertainty to disappear as
a larger fraction of the population is sampled, which raises the question of how (and whether) to perform
statistical inference in this context. Indeed, routine practice is to either ignore this additional information
on the sampling process and proceed as if sampling from a superpopulation, or to not report measures of
uncertainty quantification altogether.

I consider the case where a finite population coexists with a measurement problem, in that the features of
interest are not necessarily observable even if the entire population is sampled. A way to operationalize this
is via the repeated measurement model in equation (1.1), where only noisy counterparts of the unit-specific
responses θi can be recovered. Consider a population of size n described by features {θi}ni=1; the APE in
equation (1.2) then becomes β = n−1 ∑n

i=1 θi, and the estimation error is

β̂ − β =

(
1
N

N∑︁
i=1

θi −
1
n

n∑︁
i=1

θi

)
+ 1
N

N∑︁
i=1

(
X ′
iXi

)−1
X ′
i vi.

It is easy to see that when N = n, the first term disappears. More generally, the “size” of the first term
depends on the sample-to-population fraction f = N/n and on how heterogeneous is the population.

I show that conventional standard errors remain generally conservative in this context and propose Fi-
nite Population Corrections (FPCs) that guarantee non-conservative inference for any sample-to-population
fraction f when repeated measurements are available. Intuitively, conventional practice ignores an impor-
tant piece of information about the sampling framework; internalizing it allows us to sharpen statistical
inference. FPCs rely on weak dependence across measurements and are very simple to implement via covari-
ance restrictions on vit.

Finally, I apply these methods to two empirical settings where uncertainty has been previously under-
stood in different ways: predicting lethal encounters with police using data on all U.S. police departments,
and studying firm misallocation with a census of large Indonesian firms. Whereas uncertainty quantification
is first-order in the prediction exercise, inference has often been overlooked in the latter, where it is common
to sample all firms in a given sector or country. Finite-population inference allows for a systematic approach
to uncertainty quantification in these cases: it accounts for the presence of a measurement problem, while
at the same time leads to substantially more precise and meaningful assessments compared to conventional,
superpopulation-based confidence intervals.



4 Chapter 1

Dealing with aggregate shocks

Chapter 3 is titled Micro responses to macro shocks and is based on coauthored work with Martín Almuzara.
The starting point is the growing empirical literature that is interested in the transmission of aggregate un-
certainty to individual outcomes. Examples include the effectiveness of monetary policy of the consequences
of business cycle, TFP or oil price shocks, and entail the use of microdata in order to study how these shocks
trickle down through the economy or how heterogeneity shapes these responses.

Through the lens of the random coefficients model in equation (1.1), this is a setup where the regressor
of interest is common to all units and only varies over time, that is, Xit = Xt. (Set q = 1 for simplicity
and X = (X1, . . . , XT )′.) Furthermore, since it is hard to ex-ante rule out the presence of other, unobserved
aggregate shocksZt with possibly heterogeneous exposures γi, a simple representation of the model becomes

Yit = Xtθi + vit ,
vit = Ztγi + uit ,

(1.5)

where uit are unobserved idiosyncratic shocks. In most application, Xt represents the (perhaps noisy) mea-
surement of a shock, and so exogeneity assumptions along the lines of those discussed above are reasonable.
In this context, the simple panel regression ofYit onXt is equivalent to the between-groups estimator in (1.3),
so that the estimation error representation in (1.4) is still of use:

β̂ − β =

(
1
N

N∑︁
i=1

θi − β

)
+ 1
N

N∑︁
i=1

(
X ′X

)−1
X ′ (Zγi + ui) ,

with obvious definitions. Visually inspecting the second term then suggests that the nature of the estimation
error is intrinsically linked to the presence of aggregate shocks and to how sizable they are relative to micro
shocks.

In Chapter 3, we generalize these ideas to a more general context where interest is in the dynamic response
of Yit to an exogenous change in Xt over different horizons h = 1, . . . , H ; β̂ can be seen as the contempora-
neous impulse response (h = 0). In this context, APEs are average impulse responses over heterogeneous
units and least-squares estimators are known as (panel) local projection estimators (Jordà, 2005). Despite its
popularity, little was known about the statistical properties of these estimators. In our own empirical recol-
lection of about 50 recent papers, we document large dispersion in the way practitioners compute standard
errors, which is symptomatic of vastly different implicit stances on the importance of aggregate variation in
the data.

We then study estimation and inference in a general context where the signal-to-noise of macro shocks
in the microdata is left unrestricted. In particular, we scale the variance of idiosyncratic noise uit in (1.5) by a
parameter that can drift with the sample size, which allows for regimes where the signal value of aggregates
may be arbitrarily low (or high) in the limit. In this framework, we show how to obtain standard errors that
are uniformly valid over this parameter. Finally, we illustrate our methods in an empirical application to the
role of financial frictions and firm heterogeneity in the transmission of monetary policy in the U.S.
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Leveraging subjective expectations data

Another example of rich microdata environments are survey datasets that contain both standard variables
— say, information on household income, consumption and demographics — with subjective expectations
questions, which directly ask respondents for their own assessment of a future or uncertain event. In Chap-
ter 4, titled Estimating flexible income processes from subjective expectations data: evidence from India and

Colombia, we explore the identifying content of such new economic measures. This is based on joint work
with Manuel Arellano, Orazio Attanasio and Sam Crossman.

This is motivated by the literature on income processes, which has traditionally relied on income realiza-
tions to shed light on the heterogeneous dynamics, persistence, and income risks faced by households when
making consumption and saving decisions. Such an indirect approach requires both assumptions about
the nature of expectation formation processes and modeling the dynamics of realized variables by collect-
ing income realizations over several panel waves. In terms of the model in equation 1.1, we let yit denote log
household income, and set Xit = (1, yi,t−1) and Yit = yit, which leads to the canonical panel autoregressive
income process

yit = θi1 + θ2yi,t−1 + vit ,

where we are setting θi2 = θ for simplicity. Note that in this context strict exogeneity is unrealistic, and,
generally speaking, at least T = 3 is needed to identify the APE β = θ2, which in this context is a measure of
persistence of the income process.

Instead, suppose that households are asked to report their own subjective assessment pit that their income
next period will not exceed a given threshold rit. This is directly informative on the uncertainty faced by
households on their future income as they perceive it. Furthermore, the statistical problem itself is different,
since the stochastic nature of the relationship between pit and yi,t−1 is now tied to errors in the elicitation
process. It turns out that letting Yit = h(pit) (for some given transformation h(·)) and Xit = (1, rit , yi,t−1) it
is possible to recast the problem into a static panel data model with strictly exogenous regressors.

In Chapter 4, we generalize these ideas to setups where several probabilistic assessments of future income
are available and where we incorporate heterogeneity in responses by allowing for nonlinear income pro-
cesses where persistence itself might depend on yi,t−1 or the size of hypothetical income shocks. We develop
a methodology that combines data on income expectations and realizations to flexibly estimate conditional
cdf s, which allows us to obtain empirical measurements of subjective risk and persistence that might differ
across households depending on both observed and unobserved heterogeneity.

In our empirical analysis, we exploit subjective expectations data from two surveys conducted in rural In-
dia and Colombia to document the characteristics of (perceived) income processes in a developing context.
Our results suggest sizeable non-linearities and dynamics that are not compatible with canonical income
processes, such as the presence of substantial heteroskedasticity, conditional skewness and nonlinear persis-
tence.
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CHAPTER 2

ESTIMATION UNCERTAINTY IN
REPEATED FINITE POPULATIONS

2.1 Research context

Empirical researchers are often interested in features of finite populations — those for which all or a non-
negligible number of units are sampled: all schools in a district, most households in a village, nearly universal
records on firms or workers...

When these features are directly observable upon sampling, the usual standard error formulas need to be
adjusted down to reflect this abundance of information.1 This is, however, of limited applicability in many
relevant problems: school quality might not be directly observable even if all schools of reference were to
be sampled; instead, we might only have access to imperfect measurements such as average test scores for
different student cohorts. Similar ideas apply to learning about household-level preferences or about the
frictions firms face in a particular sector.

In this chapter, I propose new methods to assess estimation uncertainty in a framework where a finite
population coexists with a measurement problem — where even if we observe the entire population, we may
only have access to a few noisy measurements of the underlying attributes of interest. I show that conven-
tional inference methods remain generally conservative in this context and propose Finite Population Cor-
rections (FPCs) that lead to asymptotically correct inference for any sample-to-population fraction. FPCs
rely on weak dependence across measurements and are very simple to implement.

I apply these methods to two empirical settings where uncertainty has been previously understood in
different ways: predicting lethal encounters with police using data on all U.S. police departments, and study-
ing firm misallocation with a census of large Indonesian firms. Inference is of primary interest in the former,
and I show that FPCs lead to up to 50% shorter confidence intervals. Inference is usually second-order in the
latter, where full-population datasets are common. When a measurement problem is nonetheless present,

1Such results belong to a long-standing statistical literature; Cochran (1977) is a classical reference. The earlier work was done
in the context of survey sampling, see for instance Neyman (1934), Hansen and Hurwitz (1943) and Horvitz and Thompson (1952).

7
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finite-population confidence intervals correctly reflect the dominant source of estimation uncertainty.

Setup and scope for empirical work. The methods in this chapter are relevant for applications that share
two key ingredients. First, there is a well-defined population of units indexed by a set of characteristics — or
attributes — and the object of interest is defined over this population: say, an average response coefficient or
a regression parameter. 2 The analyst has access to a (random) sample of units from this population. Using a
sample to learn about a population introduces sampling uncertainty; the extent of this is determined by the
sample-to-population fraction f ∈ [0, 1]. Here f = 1 captures full population setups, such as with data on
all U.S. counties, whereas f = 0 is appropriate for CPS data, where it is reasonable to view it as a random
sample from a much larger, “infinite” population.

Second, some of these attributes might remain unobserved even if a given unit is sampled; instead, a
few error-ridden measurements of the underlying attributes are available. These are then used to estimate
the parameter of interest, introducing measurement uncertainty. We will require that these are “good mea-
surements” in the sense that it is possible to construct unbiased estimators of the underlying attributes. For
this purpose, I consider a general class of measurement models that are affine in the underlying attributes
of interest, analogous to random coefficient models in the panel data literature (Chamberlain, 1992; Arel-
lano and Bonhomme, 2012). This is a different setup from the one considered in experimental analyses in
finite populations, where uncertainty is induced by treatment randomization (Neyman, 1923/1990; Abadie,
Athey, Imbens, and Wooldridge, 2020). My setup is in the model-based tradition where policy variation is
not exploited for inference.

These two ingredients are prominent in the two empirical applications I consider. The first one is based
on Montiel-Olea, O’Flaherty, and Sethi (2021), who draw from records on all local police departments in the
U.S. to study the determinants of police use of deadly force and conduct prediction exercises involving these
agencies. Some of these predictors are directly observable (such as regional laws), while others are not (such
as departmental culture). The authors use a panel of lethal encounters over 2013–2018 and a measurement
system analogous to a heterogeneous Poisson model to disentangle their separate effects.

The second is in the spirit of a large literature following Hsieh and Klenow (2009). In a nutshell, firms
face frictions that prevent them from choosing their inputs optimally, and these translate into firm-specific
“wedges” in marginal products relative to the optimal allocation. Interest is here on investigating how these
frictions relate to firm characteristics or on quantifying their cross-sectional dispersion, which is directly in-
formative on aggregate TFP losses from misallocation. Measuring these underlying frictions is challenging:
I use census panel data for manufacturing Indonesian firms from Peters (2020) and consider a persistent–
transitory (fixed-effects) decomposition, following recent approaches in the literature (David and Venkateswaran,
2019; Chen, Restuccia, and Santaeulàlia-Llopis, 2022; Adamopoulos, Brandt, Leight, and Restuccia, 2022;
Nigmatulina, 2023).

More generally, the analysis here is relevant for a large class of problems involving latent variables, fixed
effects, factor models and random coefficient models.3 Note that repeated measurements need not have a

2Sometimes it is not obvious whether one should adopt a finite-population perspective or treat the sample as drawn from a
larger population that includes new, hypothetical units. This might be a useful conceptual exercise, see the discussion in Section
3.2 (Remark 2.1). The methods in this chapter allow to quantify and decompose estimation uncertainty under both approaches.

3Additional examples include heterogeneous earnings profiles (Guvenen, 2009), school or teacher value-added models
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clear time ordering as in panel data; measurements over space or parallel measurements are also common.
For instance, Kline et al. (2022) are interested in studying firm-level discrimination for a finite population of
108 Fortune 500 U.S. firms and have job-level repeated measurements for each company.

Finite-population inference. I propose consistent variance estimators for a fixed number of measure-
ments in a method-of-moments framework that incorporates these two ingredients. The parameters of in-
terest include finite-population estimands, defined by linear instrumental-variable moment conditions for
the attributes of interest, and common parameters of the measurement system.4

The proposed finite-population variance estimator is constructed such that it accounts for sampling-
based and measurement-based uncertainty in the right proportions, that is, it is indexed by f ∈ [0, 1]. In
essence, it exploits a parallel between the measurement–sampling decomposition in the asymptotic variance
of the estimator and a (generalized) within–between variance decomposition. The “within” part embeds the
notion of measurement uncertainty: residual variation around the underlying latent attributes of interest.
The “between” part captures the idea of sampling uncertainty: differences between sample and population
attributes. The finite-population variance estimator weights the latter by (1−f ); this generalizes the standard
Finite Population Correction (FPC) to problems where the features of interest are not directly observable
upon sampling.

The within-between decomposition requires limited dependence across measurements. This is the main
assumption in the chapter and the point of departure relative to conventional variance estimators. I specify
weak dependence as linear restrictions on the covariance matrix of the measurement errors, such as those im-
plied bym-dependent processes.5 In other words, measurement errors should be not too dependent relative
to the number of measurements, and fewer restrictions are needed as more measurements become available
— a common notion of weak dependence in the time-series literature. This is also natural to many problems
with repeated measurements; for instance, it is the key assumption in deconvolution problems, in which
one is interested in the distributional characteristics of latent variables. Importantly, all other elements in
the covariance matrix remain completely unrestricted and free to vary with observable and unobservable at-
tributes. For instance, in the context of our school quality example, it is reasonable to assume that within
variation in average test scores for different cohorts is uncorrelated, while we allow for dispersion to vary
over cohorts and to select on school quality. The generalization of within-between decompositions to weak
dependence of this form is established by Arellano and Bonhomme (2012) in the context of estimation of
distributional characteristics of random coefficient models.

The resulting variance estimator takes the form of a FPC applied to the conventional “sandwhich” esti-

(Gilraine, Gu, and McMillan, 2022; Hahn, Singleton, and Yildiz, 2023), modelling skill and scalability in mutual funds (Barras,
Gagliardini, and Scaillet, 2022), microforecasting (??Giacomini, Lee, and Sarpietro, 2023), state or country-level regressions (Villa-
corta, 2021), total factor productivity estimation (Klette, 1999; Combes, Duranton, Gobillon, Puga, and Roux, 2012), risk-sharing
in village economies (Townsend, 1994; Schulhofer-Wohl, 2011; Chiappori, Samphantharak, Schulhofer-Wohl, and Townsend,
2014), firm-level discrimination audits (Kline, Rose, and Walters, 2022), meta-analyses (Meager, 2022), heterogeneity in returns
to technology adoption in developing countries (Suri, 2011), schooling models as in Magnac, Pistolesi, and Roux (2018) or the
difference-in-differences model in Bonhomme and Sauder (2011), elicitation of preferences and risk attitudes (Barsky, Juster, Kim-
ball, and Shapiro, 1997; Andreoni and Samuelson, 2006; Ahn, Choi, Gale, and Kariv, 2014), low-rank models for time-varying
treatment effects (Bonhomme and Denis, 2024), and many others.

4I extend the framework to nonlinear transformations of the latent attributes such as variances in Remark 2.8. Such objects
are relevant in the empirical application in Section 2.5.2.

5This is a popular approach in minimum-distance estimation of covariance structures, see Arellano (2003, Chapter 5).
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mator and is very simple to implement: FPCs only require to inversion of a selection matrix specifying the
restrictions on the measurement part of the model. A drawback of the resulting estimator is that is that it is
not guaranteed to be positive semi-definite in finite samples, although this is not a problem in the simulations
and the empirical illustrations in this chapter. The presence of other observable attributes can be exploited
to construct conservative estimators following similar proposals in the design-based literature (Fogarty, 2018;
Abadie et al., 2020).

The asymptotic approximations in this chapter are established for a sequence of growing finite popu-
lations such that the limiting sample-to-population fraction remains representative of the sampling frame-
work, an embedding often referred to as in the literature as finite-population asymptotics (Lehmann, 1975; Li
and Ding, 2017; Abadie et al., 2020; Xu, 2021), and for a fixed number of measurements. Finite-population
inference via FPCs is correct in large samples for any f ∈ [0, 1], unlike conventional inference methods
which implicitly set f = 0 and remain generally conservative. An exception are common parameters: in-
tuitively, uncertainty about the measurement system itself should not depend on f , since the measurement
problem is present regardless of the sampling framework. The same is true for finite-population estimands
in the absence of heterogeneity in the underlying attributes of interest. Conversely, FPCs tend to be larger
the more dispersed population attributes are, the less noise there is in the measurement system and the more
measurements are available.

I complement these theoretical results with simulations for realistic designs to study the finite-sample
properties of the proposed FPCs. The results show that finite-population inference maintains correct (nom-
inal) coverage even for relatively small sample sizes (N = 200) and for different sample-to-population frac-
tions, while the coverage probability for conventional confidence intervals is often one. The designs are
calibrated to match reasonable signal-to-noise ratios (in the sense of relative weights of sampling and mea-
surement components), which map to the relative width of conventional and finite-population confidence
intervals in line with the discussion above.

Empirical illustrations. The framework developed in this chapter has practical implications for a wide
range of applications. To illustrate this, I revisit two very different empirical problems: a prediction exercise
where uncertainty quantification is first-order and an investigation of firm-level frictions and misallocation,
where empirical moments are often reported without measures of estimation uncertainty.

In the first exercise, I apply Finite Population Corrections to the results in Montiel-Olea et al. (2021).
Here the population of interest are local U.S. police departments, and the data comes from the Law Enforce-
ment Agency Identifiers Crosswalk dataset (LEAIC), which compiles information on all state and local law
enforcement agencies; here we set f = 1. The final dataset contains 7,585 agencies and information on the
number of yearly lethal encounters with police and a number of covariates including local demographics, the
number of officers per thousand inhabitants and state-level dummies on the severity of laws regarding offi-
cer misconduct. The authors posit an exponential model and obtain coefficient estimates via nonlinear least
squares. Next, they propose a method to obtain predictions for counterfactual-like questions of the form
“what would happen to number of lethal encounters if all 10 largest agencies had the department-specific
attributes of the Chicago Police Department?”

Uncertainty is here of primary interest — more so than point prediction or statistical significance —
and thus the authors directly report sampling-based confidence intervals (CIs). Finite-population inference
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instead identifies the right source of estimation uncertainty for this problem: the fact we only observed error-
ridden measures of agency-specific baseline police violence. Applying Finite Population Corrections, I find
that the conventional variance estimators were overly pessimistic about prediction uncertainty: standard
errors for the projection coefficients are between 20% and 60% smaller, and this in turn leads to shorter
prediction intervals. For instance, the conventional 90% CI for the question above is (545, 700); the finite-
population 90% CI is (565, 667). From a policy perspective, the finite-population CI now excludes the
realized number of lethal encounters during this period, whereas the effect remains ambiguous when treating
the data as a negligible sample from a hypothetical population of U.S. local police departments.

In the second exercise, I apply these methods to a measurement exercise concerned with labor “wedges”
for manufacturing Indonesian (formal) firms. I follow Peters (2020), who uses census data from Statistik In-
dustri and focuses on young firms. The final dataset is an unbalanced yearly panel covering 17, 000 firms
that enter the market over 1991–1999. Following recent contributions (David and Venkateswaran, 2019;
Chen et al., 2022; Adamopoulos et al., 2022; Nigmatulina, 2023), I allow for measurement error in firm-
level marginal revenue products of labor and focus on fixed-effect measures of wedges. I then explore the
relationship between firm-level labor wedges and firm size upon entry, which might be suggestive of size-
dependent policies and regulations (Guner, Ventura, and Yi, 2008). Similar exercises are commonplace in
the literature (Yeh, Macaluso, and Hershbein, 2022; Gorodnichenko, Revoltella, Svejnar, and Weiss, 2021).
I also extend the framework to cover wedge dispersion statistics, an often reported measure of “allocative
efficiency” that can be mapped to the TFP loss from misallocation (Hsieh and Klenow, 2009).

Finite-population inference provides again a clear recipe for uncertainty quantification: despite having
data on all firms we are interested in, measurement-based uncertainty needs to be accounted for. The results
point at a very imprecise relationship between firm size and labor wedges for smaller firms — even more so if
one were to calculate confidence intervals as if the sample was drawn from a superpopulation of firms. The
emphasis on measurement problems also has implications for allocative efficiency calculations: fixed-effects
measures revise down the TFP losses from misallocation of labor to about 15% from a (biased) baseline of
around 20% on average across different size groups. Finite-population confidence intervals also suggest that
this difference is statistically meaningful.

In essence, finite-population inference provides a unified approach to uncertainty quantification in prob-
lems where estimation uncertainty has been previously understood in very different ways.

Related literature. This chapter contributes to various strands of the literature.
First, it relates to the longstanding statistics literature on finite population analysis (Neyman, 1934; Hansen

and Hurwitz, 1943; Horvitz and Thompson, 1952; Hájek, 1960; Erdős and Rényi, 1959; Li and Ding, 2017),
which laid out the foundations of survey sampling and developed limit theorems under simple random sam-
pling for growing sequences of finite populations; see Lehmann (1975) for a review. The focus of this litera-
ture has been on inference under sampling-based uncertainty, whereas I consider problems where sampling
and measurement uncertainty coexist.

The discussion of measurement issues in this literature has revolved around the biases introduced by
different forms of survey errors on estimation and prediction, see for instance Hansen, Hurwitz, and Bershad
(1961) for an early contribution on (across units) interviewer bias. The literature has also noted the validity of
standard variance formulas that ignore the presence of (classical) measurement error altogether as long as the
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Finite Population Correction is negligible, see for instance Fuller (1995). Detailed treatments of measurement
issues can be found in Cochran (1977, Chapter 13) and Mukhopadhyay (2001, Chapter 7). My focus is on
inference with unbiased repeated measurements, which I exploit to propose consistent standard errors for a
large class of empirically relevant models.6

Second, this chapter relates to the literature on design-based inference, which starting with Neyman
(1923/1990) has been traditionally studied in a potential outcomes finite population context. These are
(quasi)experimental setups where a source of uncertainty arises from randomized treatment assignment.
In a context where both sampling and design uncertainty coexist, Neyman (1923/1990) noted the conserva-
tiveness of conventional variance estimators in a binary treatment setting. Later contributions generalized
this setup to regression models with additional covariates, general sampling frameworks and assignment
mechanisms, panel experiments and nonlinear models (Freedman, 2008; Rosenbaum, 2002; Abadie, Im-
bens, and Zheng, 2014; Fogarty, 2018; Abadie et al., 2020; Abadie, Athey, Imbens, and Wooldridge, 2023;
Bojinov, Rambachan, and Shephard, 2021; Xu, 2021). An interesting set of extensions (Deeb and de Chaise-
martin, 2022; Startz and Steigerwald, 2023, 2024) allows for stochastic potential outcomes (say, due to post-
randomization aggregate shocks in an RCT); this is in the spirit of measurement-based uncertainty in a
cross-sectional setting. Fogarty (2018), Abadie et al. (2020) and Xu (2021) also propose conservative finite-
population variance estimators exploiting the predictive power of (observable) fixed attributes in different
contexts.

I regard my framework as complementary to results in this tradition, both conceptually and in practice.
The conceptual difference between measurement and experimental variation is clear, and which is more
appropriate is application-specific. In practice, the two setups afford different tools for estimation and infer-
ence. For instance, exact inference for sharp nulls is possible if the analyst has access to the randomization dis-
tribution in the design world (Rosenbaum, 2002; Bojinov et al., 2021). In a model-based framework, I show
that the availability of repeated measurements leads to asymptotically non-conservative finite-population
inference.

Third, this chapter connects with the literature on fixed-T panel data random coefficient models. In
particular, within-group and between-group transformations to deal with permanent unobserved hetero-
geneity are at the heart of this literature (Chamberlain, 1992; Arellano, 2003; Arellano and Bonhomme, 2012;
Graham and Powell, 2012), and weak dependence over measurements has proved useful when estimation of
distributional characteristics is of interest (Kotlarski, 1967; Arellano and Bonhomme, 2012). It turns out
that Finite Population Corrections can be written as a variance over heterogeneous unit-level moment con-
ditions; I leverage these insights to study inference in a finite population context.

Finally, the framework developed in this chapter allows us to reinterpret some of the existing results on
inference in fixed-effects models as finite-population inference in the limit case with no sampling uncertainty.
This is the case in the “many covariates” literature, which is concerned with linear regression models with a
growing number of parameters (Cattaneo, Jansson, and Newey, 2018a,b; Kline, Saggio, and Sølvsten, 2020).
Intuitively, removing the incidental parameters problem in this setup is analogous to removing sampling-
based uncertainty. In practice, this only makes a difference for inference when the objects of interest involve

6The use of the term “measurement error” in my setup should be understood in a broad sense; it refers to any source of
random variation that contaminates the underlying features of interest.
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functions of the large-dimensional part of the model, as in Kline et al. (2020). Another example are average
marginal effects in large-T nonlinear panel data models, which have been traditionally defined conditioning
on the in-sample fixed effects, see Higgins and Jochmans (2024) for a recent contribution.

Outline. Section 3.2 builds intuition and illustrates the results in a simple example under simple random
sampling. Section 3.3 generalizes the framework and presents the main results on finite-population infer-
ence. Section 2.4 discusses a comprehensive simulation study and Section 2.5 contains the two empirical
applications. Proofs can be found in Appendix A.1.

2.2 Simple example

I first illustrate the main points of the chapter in a simple example where interest is in a population average
but the outcome of interest is contaminated with independent measurement noise. For reference, it might
help to think of estimating average school quality in a particular district using average test scores for different
cohorts.

Setup. Consider a population of size n. Unit i in the population is indexed by a fixed attribute θi, and we
are interested in the population average of θi:

βn = En
[
θi
]
≡ 1
n

n∑︁
i=1

θi.

The task of the researcher is to obtain an estimate β̂ of βn together with a quantification of estimation un-
certainty, such as a standard error or a confidence interval. Randomness in β̂ might arise from two sources,
what I refer to as sampling-based and measurement-based uncertainty. First, we might only have access to
a representative sample from the population of interest, which we indicate via the vector of inclusion indi-
cators R1:n = (R1, . . . , Rn) ∈ {0, 1}n, where Ri = 1 indicates that unit i is sampled. Second, even if unit i
is sampled, we might only observe noisy measurements Yi = (Yi1, . . . , YiT )′ of θi, so that in a given sample
the analyst has access to {Ri, RiYi}ni=1. Additionally, this requires an equation specifying the measurement
system — the way Yi relate to the underlying attributes of interest.

I formalize sampling and measurement in Assumptions 2.S1 and 2.S2, later generalized in Section 3.3.

Assumption 2.S1 (Simple random sampling).

P
(
R1:n = r1:n

)
= 1

/(
n

N

)
,

for each n-vector r1:n with En
[
ri
]
= N/n.

Assumption 2.S1 describes random sampling without replacement, which leads to a sample of size N
from the target population. The sample-to-population fraction is thus N/n; the limit case where all popu-
lation units are sampled corresponds to N/n = 1. Similarly, this formulation nests the “infinite” superpop-
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ulation framework where the sample represents a negligible fraction of the population if we let n → ∞ for
fixed N .

The attributes of interest for the sampled units are not directly observed. Instead, we have access to noisy
measurements according to

Yit = θi + εit , for t = 1, . . . , T . (2.1)

We assume that E
[
εit

]
= 0, a reasonable requirement that ensures that Yit are “good measurements” in the

sense of being unbiased for θi for each unit. Note that while here we index measurements by t, these need
not have a time ordering.

On top of this, we also assume below that there is limited dependence across measurement errors, a
necessary condition in order to gauge the extent of measurement uncertainty.

Assumption 2.S2 (Weakly dependent measurements in the simple model). The measurement errors

εi = (εi1, . . . , εiT )′ in (2.1) satisfy E
[
εiε

′
i

]
= IT σ

2; σ2 < ∞.

Assumption 2.S2 implies that randomness around the attribute of interest is uncorrelated over measure-
ments; that is, E

[
εitεis

]
= 0 for s ≠ t. Throug the lens of the school quality example where Yit are average

test scores for the tth student cohort, this is a natural starting point: it implies that cohort-specific variation
in test scores is uncorrelated across cohorts. Similar assumptions are common in measurement systems such
as (2.1); see for instance the discussion in Gilraine et al. (2022) in the context of teacher value-added models.
The homoskedasticity assumption is made for simplicity.

In Section 3.3, I generalize this assumption to allow for unrestricted heteroskedasticity and different
forms of dependence across measurements such as moving average errors, and I discuss the extent to which
weak dependence assumptions are testable. These notions are at the heart of measurement models, as they
reflect the intrinsic trade-off between unobserved heterogeneity and persistence: in an error-component
model such as (2.1), it is θi that induces strong dependence in Yit across measurements. The suitability of a
given set of restrictions should be discussed jointly with that of a given measurement model.

Estimation and estimation uncertainty. Let Ȳi = T−1 ∑T
t=1 Yit and ε̄i = T−1 ∑T

t=1 εit. A natural esti-
mator for βn is

β̂ =
1
N

n∑︁
i=1

RiȲi =
1
N

n∑︁
i=1

Riθi +
1
N

n∑︁
i=1

Ri ε̄i,

where note that we average over all units, but only those with Ri = 1 effectively enter the sums. Using
E

[
Ri

]
= N/n, it is easy to see that the estimator is unbiased: E

[
β̂
]
= βn.

The above expression also shows that the estimator decomposes into two different terms, which are at
the core of much that follows. In particular, they represent orthogonal sources of estimation uncertainty:
sampling and measurement. This can be read off directly from the variance of the estimator:

Var
(
β̂
)
= Var

(
1
N

n∑︁
i=1

Riθi

)
+ Var

(
1
N

n∑︁
i=1

Ri ε̄i

)
=

(
1 − N

n

) Varn
(
θi
)

N
+

Var
(
εit

)
/T

N
. (2.2)
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where Varn
(
θi
)
= (n − 1)−1 ∑n

i=1
(
θi − βn

)2 and where we have used Assumptions 2.S1 and 2.S2.7 These
two terms embed the notion of sampling and measurement uncertainty, respectively. The first term is the
variance of the ideal estimator of βn if θi were directly observable; sampling is the only source of randomness
here. The second term captures uncertainty induced by the measurement problem.

For our purposes, the most important feature in the expression above is that sampling-based uncertainty
is indexed by the sample-to-population fraction f = N/n. It is helpful to view Var

(
β̂
)

as a function of f , let
it be denoted by V

(
f
)
. When f = 1, there is no sampling uncertainty: in the absence of a measurement prob-

lem, the ideal estimator of βn would be βn itself. On the other extreme, sampling uncertainty is largest when
we regard the sample as a negligible fraction of the population. This is captured by V(0) = limf→0 V

(
f
)
.

At the same time, measurement uncertainty does not depend on f : our ability to obtain more accurate
measurements of θi for each unit is not related to the sampling framework. The relative weight of these two
components in estimation uncertainty is modulated by signal-to-noise in the data: sampling uncertainty
is relatively larger the more dispersed the underlying attributes are in the population (signal) and the less
noise there is in the measurement system, captured by the size of the measurement errors and the number
of measurements.

Remark 2.1 (External validity). An advantage of the sampling–measurement framework is that it sheds
light on the relevant sources of uncertainty for a given question of interest. One notion of external validity re-
searchers might be concerned with is that of extrapolation beyond the specific circumstances that occurred
during measurement. For instance, this might involve prediction exercises or “parallel universes” where a
different sequence of shocks could have realized. Appropriately accounting for measurement-based uncer-
tainty implies that βn is directly informative for these questions.8 Another notion of external validity in the
literature is that of generalizability of results to an exchangeable population of interest; here it is adequately
accounting for sampling-based uncertainty what guarantees external validity. When that population is the
one over which βn is defined, this follows from Assumption 2.S1. Alternatively, we can think of extrapolabil-
ity of the results to new hypothetical units drawn from a superpopulation where the original and the new
“target” units are exchangeable; say with size ñ ≥ n. We then just need to redefine βñ as the parameter of
interest. Such conceptual exercises are often useful in meta-analyses (Meager, 2022). A more meaningful
question for policy purposes is that of transferability of results to a new, different population. This requires
additional tools that are independent of the sampling framework, see Jin and Rothenhäusler (2024) for a
discussion in a finite population context.

Conventional inference. The conventional variance estimator for β̂ = N−1 ∑n
i=1 RiȲi would be

V̂cluster
=

1
N (N − 1)

n∑︁
i=1

Ri

(
Ȳi − β̂

)2
;

7In particular, we use basic results on simple random sampling without replacement repeatedly. Assumption 2.S1 implies
E

[
Ri

]
= N/n and E

[
RiRj

]
= N (N − 1)/n(n − 1) for j ≠ i. It is this dependence across sampling indicators that induces the

form of the first term in (2.2).
8This notion is often present in discussions about external validity when certain shocks are not accounted for; see for instance

Hahn, Kuersteiner, and Mazzocco (2020) and Deeb and de Chaisemartin (2022) in the context of aggregate shocks.
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a cluster-robust variance estimator (Liang and Zeger, 1986; Arellano, 1987). This is the natural choice here:
clustering within units accounts for the presence of the persistent component θi in the measurement equa-
tion in (2.1); this is true regardless of the degree of dependence across measurement errors. In Appendix
A.2.1, I show that

E
[
V̂cluster

]
= V (0) ≥ V

(
f
)
,

for any sample-to-population fraction f . That is, the conventional variance estimator implicitly treats the
sample as a random draw from a much larger population, and using V̂cluster for inference introduces super-
fluous sampling uncertainty when this is not the case.

By how much V̂cluster exaggerates estimation uncertainty is a matter of signal-to-noise. For instance,
letting Varn

(
θi
)
= 1 and Var

(
εit

)
/T = 1, the variance is on average twice as large as it should be when the

sample is also the population. An exception is the limit case where θi = θ for all units: since all underlying
attributes are equal to each other, which population units are sampled and which ones are not is irrelevant.

Finite Population Corrections. It turns out that we can make progress when repeated measurements
are available. In particular, the standard within-between variance decomposition gives

�Var
(
εit

)
=

1
N (T − 1)

n∑︁
i=1

Ri

T∑︁
t=1

(
Yit − Ȳi

)2
,

�Varn
(
θi
)
=

1
N − 1

n∑︁
i=1

Ri

(
Ȳi − β̂

)2
−

�Var
(
εit

)
T

,

which rely on weak dependence for their validity (Assumption 2.S2). The finite-population variance es-
timator is then constructed via a simple adjustment to the conventional estimator — a Finite Population
Correction:

V̂
(
f
)
= V̂cluster − f

�Varn
(
θi
)

N
.

It is not difficult to show that for any f we have

E
[
V̂

(
f
) ]

= V
(
f
)
,

so that the finite-population variance estimator reflects the right amount of sampling and measurement
uncertainty in the problem. Under the regularity conditions in Section 3.3, V̂

(
f
)

can then be used to perform
asymptotically correct inference for any f and a fixed number of measurements.

2.3 General case

In this section, I study estimation and inference for finite-population estimands in a general framework
where sampling-based and measurement-based uncertainty coexist and provide Finite Population Correc-
tions that guarantee non-conservative inference for any sample-to-population fraction.

I introduce the setup in Section 2.3.1 and characterize estimation uncertainty for moment-based estima-
tors of the parameters of interest in Section 2.3.2. I introduce Finite Population Corrections and state the
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main result on non-conservative inference in Section 3.3.2. Proofs and derivations and relegated to Appendix
A.1.

2.3.1 Setup

Consider a population of sizen. Unit i in the population is characterized by a set of fixed attributes {θi,Wi},
and the researcher is interested in a summary measure βn of outcome θi, say, an average over the population
or a coefficient on a regression involving characteristics Wi. Probability statements are understood to hold
conditional on these fixed attributes. Population averages are denoted as En

[
f (xi)

]
:= n−1 ∑n

i=1 f (xi) for a
function f applied to an array (xi)ni=1.

Given a sampling framework, we use (R1, . . . , Rn) ∈ {0, 1}n to denote the vector of inclusion indica-
tors; Ri = 1 indicates that unit i is sampled. The observed data for each sampled unit is a vector of noisy
measurements Yi = (Yi1, . . . , YiT )′. In a given sample, the analyst has access to {Ri, RiYi, RiWi}ni=1. We
now define the objects of interest and formalize each dimension of uncertainty.

Estimands

Let dim θi = 1 and dim βn = p. That θi are scalar outcomes is for simplicity and all results extend with minor
modifications to the multivariate case; I will point those out throughout the exposition. The target objects
βn solve population moment conditions h(θ,W, bn) affine in θ:

En
[
h1(Wi; βn)

(
θi − h0(Wi; βn)

) ]
= 0, (2.3)

where h0 (scalar-valued) and h1 (of size p×1) are known functions continuously differentiable in βn. I assume
that h1(Wi; βn) ≠ 0 for each unit in the population.9

The moment conditions in (2.3) define a broad class that includes moment-based methods such as lin-
ear regression models, IV-like estimands or nonlinear least squares. Setting p = 1, h1(Wi; βn) = 1 and
h0(Wi; βn) = βn recovers βn = En

[
θi
]

as in Section 3.2, a population average over heterogeneous attributes.

Remark 2.2 (Prediction example, revisited). In this application the population of interest comprises all
local police agencies in the U.S., and θi is the baseline level of police violence associated to each department
over the panel horizon. Montiel-Olea et al. (2021) are interested in observable determinants Zi of θi such as
state-level laws or demographics and specify an exponential model of the form

θi = exp
(
Z′
iβn + αi

)
, (2.4)

where αi is the unexplained component and the target coefficients βn are defined via a nonlinear least squares
problem. Through the lens of our framework, Zi are observable attributes included in Wi, h1(Wi; βn) =

Zi exp
(
Z′
iβn

)
and h0(Wi; βn) = exp

(
Z′
iβn

)
; equation (10) in Montiel-Olea et al. (2021) is then exactly (2.3).

The ultimate objects of interest (predictions and counterfactuals) then involve known transformations of
these βn parameters.

9This is trivially satisfied by redefining the subpopulation to the set of units that satisfy this condition. In other words, this
condition is definitional.
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Remark 2.3 (Misallocation example, revisited). In the exercise in Section 2.5.2 we are interested in char-
acterizing the extent of resource misallocation in the formal manufacturing sector in Indonesia, and θi are
“wedges” that measure firm-level deviations from optimal allocation of labor. A popular approach is to ex-
plore whether wedges relate systematically to observable firm-level characteristics Zi, such as measures of
firm size. In this context, βn are least-squares projection coefficients.

Equation (2.3), on the other hand, excludes nonlinear transformations of θi. Generally speaking, nonlin-
ear transformations of unbiased measurements are not unbiased, and identification and estimation require
additional assumptions. It is nonetheless possible to extend this framework to cover certain nonlinear trans-
formations. Some of these are of great relevance in the empirical illustration in Section 2.5.2, where the extent
of cross-sectional dispersion in “wedges” θi can be directly mapped to macroeconomic aggregates. I discuss
extensions to this case in Remark 2.8 below and in the empirical application.

Measurement

I specify the following measurement equation for θi:

Yi = g0(Xi; δ) + g1(Xi; δ)θi + εi, E
[
εi
]
= 0, (2.5)

where Xi = (X ′
i1, . . . , X

′
iT )

′ is a T × dimXit matrix of fixed attributes contained in Wi,
10 εi = (εi1, . . . , εiT )′

are independent but not necessarily identically distributed measurement errors and δ is a fixed k-vector of
unknown parameters (k ≤ dimXit). These might be of direct or auxiliary interest to the researcher and do
not depend on population size n. Finally, g0 and g1 (of size T × 1) are known functions continuously differ-
entiable in δ. This formulation allows the model to be nonlinear in observable attributes Xi and common
parameters and to be known only up to the latter;T > 1 is needed to estimate the system. Allowing for non-
linear terms in the measurement equation substantially broadens the applicability of the methods developed
here; for instance, (2.5) covers factor models and multiplicative models with unobserved components such
as the Poisson regression model in Section 2.5.1 (see the introduction section for examples). We also assume
that det g1(Xi; δ)′g1(Xi; δ) ≠ 0 for all i, which essentially amounts to requiring that the data are informative
of attribute θi for the population of interest.11

The zero mean assumption E
[
εi
]
= 0 ensures that the repeated measurements Yit are unbiased for the

nonstochastic component of the model. In a panel data context defined in a superpopulation where {Wi, θi}
are treated as random quantities, E

[
εi
]
= 0 is a zero conditional mean assumption as in the random coeffi-

cients model in Chamberlain (1992) and Arellano and Bonhomme (2012). Assumption 2.1 below is the main
necessary assumption of the chapter and formalizes the notion of limited dependence in measurements.

Assumption 2.1 (Weakly dependent errors).

10Attributes in Wi but not in Xi are excluded instruments from the point of view of the measurement equation (2.5); these
might help describe θi and enter the moment condition for βn.

11This condition is analogous to that on h1 in equation (2.3), in that it implies that the results apply for the subpopulation
of units that satisfy this requirement. For instance, for a difference-in-difference measurement model where Xit ∈ {0, 1} and
T = 2, the restriction that Xi1 + Xi2 ≠ 0 redefines the population of interest to treated units and reflects the familiar result that
βn = En

[
θi
]

is the ATT rather than the ATE (in the absence of additional assumptions). See Graham and Powell (2012) for a
discussion of irregular models where det g1 (Xi ; δ)′g1 (Xi ; δ) might be close to zero for some units.
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Let S(m) be a T 2 ×m full column rank selection matrix such that E
[
εi ⊗ εi

]
= S(m)ωi for an m-vector of

parameters ωi and the measurement system defined in (2.5). Then

m ≤ T (T + 1)
2

− 1. (2.6)

Assumption 2.1 rules out fully unrestricted covariance matrices, but allows for arbitrary patterns of de-
pendence and heteroskedasticity in the non-restricted elements ωi. Assumption 2.1 operationalizes the no-
tion of weak dependence over repeated measurements via the choice of selection matrix S(m) , which imposes
linear restrictions on Ωi = E

[
εiε

′
i

]
.1213

Limited dependence is particularly appealing in a repeated measurements context, where it is expected
that randomness in those is (partly) non-systematic. When measurements are drawn in parallel, indepen-
dence might be reasonable; when measurements have a natural time or spatial ordering, a stronger associ-
ation might be expected between closer errors than between those far apart. Moving average processes are
convenient implementations of this idea. Similar notions of weak dependence also underpin much of the
work in time series econometrics.14

Remark 2.4 (Testable restrictions.). When the order condition (2.6) is strict, Assumption 2.1 is testable.
A standard J -test can be constructed following the long-standing panel data literature on testing covari-
ance structures (Abowd and Card, 1989; Arellano, 2003; Arellano and Bonhomme, 2012). The informative
content of the data for Assumption 2.1 and its plausibility is evident in the empirical applications that are
discussed below.

Sampling

Assumption 2.2 places assumptions onR1, . . . , Rn and embeds the population into a sequence of finite pop-
ulations of growing sizes n → ∞.

Assumption 2.2 (Random sampling).

(i) Given the system in (2.5), unit i is independently sampled with probability fn > 0.

12For instance, with T = 2 measurements, the restriction E
[
εi1εi2

]
= 0 can be represented as

S(2) =

(
1 0 0 0
0 0 0 1

) ′
.

Note that this leaves E
[
ε2
it

]
for t ∈ {1, 2} completely unrestricted.

13If dim θi > 1, (2.6) is modified to

m ≤ T (T + 1)
2

− dim θi (dim θi + 1)
2

.

This result is established in Arellano and Bonhomme (2012) and reflects a fundamental trade-off between unobserved heterogene-
ity and error persistence in panel data models with unit-level coefficients.

14Classical references are Hansen and Singleton (1982) and Newey and West (1987). The literature of repeated measurements
has often favored moving average processes since they imply linear restrictions on Ωi , see for instance Bonhomme and Robin
(2009) and Bonhomme and Robin (2010) in the context of factor models and the discussion in Arellano (2003, Chapter 5). Au-
toregressive processes, on the other hand, are not covered by Assumption 2.1. Still, the methods in this chapter can be extended to
cover such forms of dependence over measurements via quasi-differencing; see also Arellano and Bonhomme (2012, Section 3.2)
for the counterpart to Assumption 2.1.
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(ii) fn satisfies nfn → ∞ and fn → f ∈ [0, 1].

Assumption 2.2(i) formalizes random sampling and rules out sample selection. It also implies that the
sample sizeN =

∑n
i=1 Ri is random, a convenience device to avoid dealing with dependence across inclusion

indicators — moving beyond the exact results in Section 3.2. Note that f̂ = N/n is a natural estimator of
fn; this is inconsequential for the large-sample results presented here as long as f̂ /fn

p
−−−−−→ 1 as n → ∞.

Assumption 2.2(ii) ensures that as n → ∞ the expected sample size nfn also increases and that the sampling
fraction fn has a well-defined limit. In essence, this is a way of relying on large-sample approximations for
finite populations while ensuring that these remain representative of the sampling framework; for instance,
choosing a sequence such that lim fn = 0 allows us to capture the standard environment where the sample
becomes negligible relative to the population.15

Estimator

Let γn = (δ′, β′n)′ be the (k + p) parameters of interest, including both finite-population estimands and
parameters of the measurement system. For a generic γ̃, let

u
(
Yi,Wi, γ̃

)
= Yi − g0

(
Xi; δ̃

)
− g1

(
Xi; δ̃

)
h0

(
Wi; β̃

)
(2.7)

and letQi

(
δ̃
)
= IT−g1

(
Xi; δ̃

)
g1

(
Xi; δ̃

)†
denote the projection on the orthogonal of the span of g1

(
Xi; δ̃

)
.16

Consider a (non-redundant) set of instruments A
(
Wi, δ̃

)
for δ, assumed to be continuously differentiable

in δ. I consider a method-of-moments approach with moment function

ψ (Yi,Wi, γ̃) =
(
ψδ (Yi,Wi, γ̃)
ψβ(Yi,Wi, γ̃)

)
=

©­«
A

(
Wi, δ̃

)
Qi

(
δ̃
)

h1(Wi; β̃)g1

(
Xi; δ̃

)†ª®¬ u
(
Yi,Wi, γ̃

)
. (2.8)

Some intuition is as follows. Unobserved attributes θi are incidental parameters from the point of view of
estimation of the parameters of the measurement system (2.5). The role of Qi

(
δ̃
)

is to induce a transforma-

tion of the system that does not depend on θi; note thatQi

(
δ̃
)
g1

(
Xi; δ̃

)
= 0T . The moment conditions for

βn, on the other hand, rescale the system so that g1

(
Xi; δ̃

)†
g1

(
Xi; δ̃

)
= 1 and then bring in the population

moment conditions for βn defined in (2.3). The method-of-moments estimator γ̂ solves:

n∑︁
i=1

Riψ (Yi,Wi, γ̂) = 0. (2.9)

15These embeddings are referred to as finite-population asymptotics in the literature, see Lehmann (1975), Aronow, Green,
and Lee (2014), Li and Ding (2017), Abadie et al. (2020) and Xu (2021) for applications.

16For a matrixB, B† denotes its Moore–Penrose pseudoinverse. In the context of panel data models, g1

(
Xi ; δ̃

)†
andQi

(
δ̃
)

are
often referred to as generalized between- and within-group operators, respectively (see, for instance, Chamberlain, 1992; Arellano
and Bonhomme, 2012).
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2.3.2 Characterizing estimation uncertainty

Here, I study the large-sample properties of γ̂ as an estimator of γn, characterize its asymptotic variance and
discuss estimation uncertainty in finite populations.

First, note that γn solves
En

[
E

[
ψ (Yi,Wi, γn)

] ]
= 0. (2.10)

This can be verified by noting that the moment function at γn satisfies:

ψδ (Yi,Wi, γn) = A
(
Wi, δ

)
Qi (δ) εi,

ψβ(Yi,Wi, γn) = h1(Wi, βn)
(
θi − h0

(
Wi; βn

) )
+ h1(Wi, βn)g1

(
Xi; δ

)†
εi.

The result follows from E
[
εi
]
= 0 and averaging over population attributes.17 Note that setting h1 = 1,

h0 = βn and g1 = 1T , ψβ(Yi,Wi, γn) reduces to the estimation error in the simple example in Section 3.2.
Let

Vψ,n(fn) = En
[
E

[
ψ (Yi,Wi, γn)ψ (Yi,Wi, γn)′

] ]
− fnEn

[
E

[
ψ (Yi,Wi, γn)

]
E

[
ψ (Yi,Wi, γn)

]′]
.

(2.11)

Below we establish that the limit of Vψ,n(fn) as n → ∞ is the inner term of the asymptotic variance; the

second term in (2.11) is the Finite Population Correction. Finally, let Hn = En

[
E

[
∇γ̃ψ (Yi,Wi, γn)

] ]
.

Proposition 2.1 characterizes the asymptotic distribution of the (rescaled) estimation error; the following
limits are assumed to exist as part of the regularity conditions.

Proposition 2.1 (Asymptotic distribution). Under the measurement system in (2.5), Assumption 2.2 and

the regularity conditions in Assumption A.1 in Appendix A.1, as n → ∞ and for given T > 1:

√
N

(
γ̂ − γn

) d−−−−−→ N
(
0, V(f )

)
,

where

V(f ) =
(

lim
n→∞

Hn

)−1
lim
n→∞

Vψ,n(fn)
(

lim
n→∞

H ′
n

)−1
. (2.12)

Proof. See Appendix A.1. □

Proposition 2.1 is the finite-population counterpart to standard results for problems with repeated mea-
surements.18 While the asymptotic variance has the usual “sandwich” form, it is indexed by f . In other
words, estimation uncertainty depends on the sample-to-population fraction — even if the measurement
problem does not. The reason for this is simple: these two sources of uncertainty are orthogonal to each
other, and randomness in γ̂ reflects both. As f → 1, randomness due to sampling disappears and the

17I take as given that δ is identified from E
[
ψδ (Yi ,Wi , γn)

]
= 0. A necessary requirement is that A contains dim δ = k valid

instruments.
18This can be established with our sampling assumption (Assumption 2.2) and regularity conditions for moment-based esti-

mators (Newey and McFadden, 1994), but does not rely on assumptions of dependence across measurements. See also Xu (2021)
for a similar result in a world with design-based uncertainty and no repeated measurements.
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asymptotic variance of γ̂ adjusts proportionally via the Finite Population Correction. Note that the FPC
is positive-semidefinite; it follows that for f ′ ≥ f , V(f ′) ≤ V(f ) in the matrix sense.

Two particular cases are worth highlighting. First, when f = 0 the standard sandwich formula recovers.
This is the basis for the standard, superpopulation-based approach to inference; let V̂(0) denote any such
estimator. It then follows that V̂(0) is generally inconsistent for the finite-population variance when f > 0,
and that conventional standard errors tend to exaggerate estimation uncertainty.

Second, the FPC is zero when E
[
ψ (Yi,Wi, γn)

]
= 0, that is, when the population moment condition

(2.10) holds for each unit i. When it holds only on average, the FPC is precisely equal to the variance of these
heterogeneous unit-level moment conditions over the population, and is larger the more dispersed these are.
In the simple example in Section 3.2, E

[
ψ (Yi,Wi, γn)

]
= θi − βn and the FPC equals En

[ (
θi − βn

)2
]

, the
variance over population heterogeneous responses. It is this insight and the connection to random coefficient
models that I exploit to propose Finite Population Correction estimators.

One relevant case in which FPCs are zero are parameters of the measurement model, denoted here δ. This
follows from E

[
ψδ (Yi,Wi, γn)

]
= 0; it can be verified that the upper-left k × k block of Σn is a zero ma-

trix. This is intuitive: since the measurement problem is present regardless of how much of the population
we sample, uncertainty about the measurement system itself should not depend on f . When population at-
tributes {θi}ni=1 are actually homogeneous, βn becomes a common parameter. Through the lens of the causal
inference literature, this is the classical result that conventional standard errors with randomized treatments
are not conservative under constant treatment effects (Neyman, 1923/1990; Abadie et al., 2020).

Remark 2.5 (Perfect measurements). Suppose that outcome attributes are observed without error; for
simplicity, set Yit = θi and T = 1. Then the moment function ψβ is nonstochastic and the variance of the
moment condition in (2.11) adapts to reflect so:

Vψ,n(fn) = (1 − fn)En
[
ψβ(Yi,Wi, γn)ψβ(Yi,Wi, γn)′

]
.

This is analogous to the classical finite-populations literature where sampling-based uncertainty is the only
source of randomness in β̂. The usual variance estimator (say, heteroskedasticity-robust) V̂(0) is conserva-
tive, but an adjustment is here straightforward: V̂(f ) = (1 − f )V̂(0) will do.

Whichever the setup, the dominant paradigm in empirical work is to interpret uncertainty as-if derived
from an infinite population. In the next section, I show that the discussion above is not only about the
interpretation of uncertainty but has practical consequences: estimating FPCs is possible when repeated
measurements are available.

2.3.3 Finite Population Corrections

Our goal in this section is to propose consistent finite-population standard errors and confidence intervals
for γ̂.

Let ûi ≡ u
(
Yi,Wi, γ̂

)
, where u

(
Yi,Wi, γ̃

)
is defined in (2.7). This is a compound residual term that

includes both types of unobservables in the measurement equation: attributes and measurement errors.
In a nutshell, the idea is to mimic the approach in the simple example in Section 3.2 and propose variance
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estimators that weight these two elements according to some f̃ ∈ [0, 1]. LetQ∗
i

(
δ̃
)

denote the projection on

the orthogonal of the span of g1

(
Xi; δ̃

)
⊗ g1

(
Xi; δ̃

)
.19 The following are weighted unit-level contributions

to the finite-population variance:20

Λ̂i

(
f̃
)
= vec−1

[(
1 − f̃

)
IT 2 + f̃ S(m)

(
Q∗
i

(
δ̂
)
S(m)

)†
Q∗
i

(
δ̂
)] (

ûi ⊗ ûi
)
. (2.13)

The cross-products ûi ⊗ ûi weighted by
(
1 − f̃

)
include both attributes and measurement errors; those

weighted by f̃ include only measurement errors. The latter are constructed by imposing the covariance struc-
ture in Assumption 2.1 and then projecting out the part involving the attributes viaQi

(
δ̂
)

. This estimator is
based on the constructive identification proof in Arellano and Bonhomme (2012) for covariance structures
in panel data random coefficient models. Importantly, this is the only modification that finite-population
standard errors will require relative to conventional approaches: implementation only requires defining a
selection matrix and a projection matrix.

Now, the finite-population variance estimator of the score is

V̂ψ

(
f̂
)
=

1
N

n∑︁
i=1

Ri
©­«
A

(
Wi, δ̂

)
Qi

(
δ̂
)

h1(Wi; β̂)g1

(
Xi; δ̂

)†ª®¬ Λ̂i

(
f̂
) ©­«

A
(
Wi, δ̂

)
Qi

(
δ̂
)

h1(Wi; β̂)g1

(
Xi; δ̂

)†ª®¬
′

,

where recall that f̂ = N/n. Note that using Λ̂i (0) instead yields the conventional estimator of the variance
of the scores for repeated measurement models, which averages over both dispersion in attributes and disper-
sion in measurement errors: the presence of the former reminds us that this is in the class of cluster-robust
variance estimators.

Let Ĥ = N−1 ∑n
i=1 Ri∇γ̃ψ (Yi,Wi, γ̂). The estimator of the finite-population variance in (2.12) is given

by
V̂

(
f̂
)
= Ĥ−1V̂ψ

(
f̂
)
Ĥ ′−1. (2.14)

For V̂
(
f̂
)
≥ 0 and an arbitrary column vector λ ≠ 0(k+p)×1, the finite-population standard error is σ̂λ

(
f̂
)
=√︂

λ′V̂
(
f̂
)
λ/N . Finally, the (1 − α) confidence interval for λ′γn is

Ĉλ,α

(
f̂
)
=

[
λ′γ̂ ± z1−α/2σ̂λ

(
f̂
)]
, (2.15)

where zq is the q-quantile of the standard normal distribution. Proposition 2.2 below states that this leads

19This is the counterpart of Qi

(
δ̃
)

for cross-products of the data:

Q∗
i

(
δ̃
)
= IT 2 − g1

(
Xi ; δ̃

)
g1

(
Xi ; δ̃

)†
⊗ g1

(
Xi ; δ̃

)
g1

(
Xi ; δ̃

)†
.

20vec−1
m,n : Rmn → Rm×n is the inverse vec operator. For an m × n matrix B, we have = vec−1 vecB = B. I omit the subscripts

in the text since I only use vec−1 here to reconstruct T × T matrices. This is readily available in commercial software, such as via
reshape in Matlab.
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to non-conservative inference for any fn that satisfies Assumption 2.2.

Proposition 2.2 (Asymptotically correct inference). Under the measurement system in (2.5), Assumption

2.1, Assumption 2.2 and the regularity conditions in Assumption A.1 in Appendix A.1, if rankQ∗
i (δ) S(m) = m

then as n → ∞ and for given T > 1

lim
n→∞

P
(
λ′γn ∈ Ĉλ,α

(
f̂
))

= 1 − α.

Proof. See Appendix A.1. □

The most relevant assumption behind Proposition 2.2 is that of weak dependence across measurements.
Assumption 2.1, however, is not sufficient. We also require the more primitive condition that Q∗

i (δ) S(m)
has linearly independent columns and thus the left inverse in (2.13) is well-defined. This rank condition rules
out cases where it is not possible to distinguish attributes from dependence in measurement errors from the
second-order moments of the data even if restrictions are such that there are sufficient free parameters in the
“reduced-form” covariance matrix.21

Finally, note that all elements of V̂
(
f̂
)

are generally speaking a function of f̂ , despite our discussion fol-
lowing Proposition 2.1 that estimation uncertainty for common parameters is independent of the sampling
fraction. Under Assumption 2.1, the proposed variance is nonetheless valid: as we move along f̃ ∈ [0, 1],
we are only changing the relative weight of the attributes component in the compound residual term, but
the upper-left k× k block of V̂ψ (f̃ ) is constructed such that it projects out this component.22 For f̃ = 1 and
from the point of view of common parameters, this can be seen as a generalization of the approach in Stock
and Watson (2008).

Note that the variance estimator in (2.14) is not guaranteed to be positive semidefinite for all f̃ ∈ [0, 1]
as written, although there always exists some f̃ for which this is the case. A natural alternative is to use
a conservative estimator, say V̂(0).23 This is not an issue neither in our empirical applications nor in the
simulation evidence presented in Section 2.4.

Remark 2.6 (Finite Population Corrections). Note that (2.14) can be written as:

V̂
(
f̂
)
= V̂(0) − f̂

(
V̂(0) − V̂(1)

)
,

which has the intuitive form “conventional estimator−FPC.” The above representation is most useful when
different conventional estimators might be available, such as when δ are not of direct interest and estimation

21One such example is provided by the panel data literature on distinguishing unobserved heterogeneity from genuine depen-
dence, where a measurement model with uncorrelated measurements is observationally equivalent to one with common attributes
(θi = θ for all units) and serial correlation in very short panels (T = 2), see Arellano (2003, pp. 58–60) for additional details. More
generally, the rank condition fails when covariance restrictions do not restrict dependence across measurements but only impose
homogeneity assumptions such as equal diagonal entries.

22This follows from the definition of common parameters themselves, see again the discussion in Section 2.3.1. Of course, if
Assumption 2.1 fails, only the estimator that sets f = 0 would be consistent.

23This is a common drawback of estimators that are constructed by subtracting terms, as it becomes clear in the remark below.
As such, asymptotically valid estimators can also be constructed in a number of standard ways in the literature, such as rotating
the eigenvalues in the eigendecomposition of V̂

(
f̂
)

; see for instance the discussion for two-way clustering in Cameron, Gelbach,
and Miller (2011).
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proceeds in two steps. It is then common to resort to bootstrap methods for inference on β̂; an example
of this is the first of my empirical illustrations. Let us focus on the jth entry of β̂ and denote by Ṽβ,j (0)
the bootstrap variance.24 A finite-population variance estimator for β̂j − βn,j that is valid in the sense of
Proposition 2.2 is then

Ṽβ,j (0) − f̂ e′jĤ
−1
β

(
V̂ψβ

(0) − V̂ψβ
(1)

)
Ĥ ′−1
β ej ,

where ej is the basis vector of size p, Ĥβ indexes the corresponding p× p block of Ĥ and V̂ψβ

(
f̂
)

is analogous

to V̂ψ

(
f̂
)

but only involves the ψβ. In other words, the analyst just needs an estimate of FPC, and Ṽβ,j (0)
automatically takes care of two-step uncertainty (see also Newey and McFadden, 1994, Chapter 6).

Remark 2.7 (Conservative finite-population inference). Asymptotically correct inference requires lim-
ited dependence in measurements. When Assumption 2.1 is not attractive, it is nonetheless possible to com-
pute partial FPCs by leveraging the predictive content of covariates Wi for the attributes of interest. In
particular, building on similar ideas from the causal inference literature (Fogarty, 2018; Abadie et al., 2020;
Xu, 2021), one can regress scoresψβ

(
Yi,Wi, γ̂

)
on observable attributes and use the variance of the predicted

values to form partial FPCs.

Remark 2.8 (Extensions to higher order moments). Model (2.5) is a measurement equation for θi. The
results presented here extend to a nonlinear transformation of θi, say θ2

i , if a measurement equation for
θ2
i is available. A different question is whether this is also the case if we maintain (2.5) as a baseline equa-

tion. One possibility is as follows; suppose for simplicity that δ are known. Let Y ∗
i =

(
Yi − g0(Xi; δ)

)
⊗(

Yi − g0(Xi; δ)
)
, g∗1 (Xi; δ) = g1(Xi; δ) ⊗ g1(Xi; δ) and define

Ỹ ∗
i =

[
IT 2 − S(m)

(
Q∗
i (δ) S(m)

)†
Q∗
i (δ)

]
Y ∗
i . (2.16)

It can then be shown that:
Ỹ ∗
i = g∗1 (Xi; δ)θ2

i + ε̃∗i , E
[
ε̃∗i
]
= 0,

which is a measurement equation for θ2
i of the form (2.5). We can then make progress by characterizing the

covariance structure of ε̃∗i in parallel to the exposition above. A limitation of this approach is that it imposes
more stringent conditions on the number of available measurements relative to those needed for estimation.
Still, objects such as the population-level dispersion of θi are of great interest in the context of the application
in Section 2.5.2. I take a slightly different route and propose there a non-conservative variance estimator based
on higher-order cumulants that directly estimates the FPC. This also illustrates the discussion in Remark 2.6.

2.4 Simulation study

Here I discuss a simulation study intended to illustrate the discussion so far and verify the finite-sample
properties of the inference procedures proposed in the previous section.

24Similar ot the cluster-robust case, it can be shown that nonparametric (block) bootstrap estimators are also only consistent
for V(0), regardless of the sampling fraction f .
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Design. The design here considers a relatively simple measurement system that is additive in a scalar at-
tribute of interest θi, and thus in the spirit of Section 3.2 and the empirical illustration in Section 2.5.2. I
augment it with some additional ingredients as follows.

First, we consider population outcome attributes {θi}ni=1 that are drawn from a superpopulation θi ∼
N

(
1, σ2

θ

)
; interest is on the population average βn = En

[
θi
]

. We also define a T -vector of observable at-
tributes Xi such that

Xi0 =
(
1 − 0.25θi

)
+ |θi |Ui0,

Xit = 0.8Xi,t−1 + Uit ,

and Uit ∼ t(κ) independently for t = 0, . . . , T . This allows for persistence and non-normal features in
attributes Xi, and induces dependence or “fixed-effects endogeneity” in θi. The population is thus charac-
terized by {θi, Xi}ni=1. The measurement equation for θi is specified as

Yit = θi + δXit + εit , (2.17)

where εit ∼ N
(
0, X2

it

)
independently over measurements. This augments the simple measurement model

with a common parameter δ, which has to be estimated in a first step, and heteroskedasticity in measurement
errors.

The design sets (σθ , κ) to control signal-to-noise. That is, we consider different relative weights of sampling-
to-measurement uncertainty in the variance of the estimator. Note that the presence of δ adds two-step
uncertainty to the problem, which in practice is equivalent to measurement uncertainty in the sense that
the measurement system is not fully known. I also consider relatively small sample sizes (N = 200) and
T = 3 measurements, and vary population size according to a grid of sample-to-population fractions f ∈
{0, 0.1, . . . , 0.9, 1}. For instance, f = 0.1 is associated to a population of n = 2, 000 units. The results for
f = 0 correspond to the superpopulation data generating process (that is, the estimand equals one).

Results. Figures 2.1, 2.2 and 2.3 report coverage and width of finite-population confidence intervals over
different sample-to-population fractions and for three signal-to-noise regimes (low, moderate and large, re-
spectively). I also report conservative (or superpopulation) confidence intervals Liang and Zeger (1986);
Arellano (1987) that impose f = 0 regardless of the actual sampling framework. I use critical values based
on tn−1 as recommended in (Hansen, 2007) for cluster-robust estimators.

The results suggest an excellent performance of finite-population inference even for relatively small sam-
ple sizes, maintaining coverage close to nominal for all sample-to-population fractions and signal-to-noise
regimes considered. Similarly, the figures also illustrate the conservativeness of conventional estimators for
f > 0. In particular, actual coverage increases monotonically as f → 1, and is one or close to one for cases
where the sample is a large fraction of the population.

The extent of conservativeness is better captured by looking at the relative width of confidence intervals,
and so is the size of Finite Population Corrections as a result. In line with the discussion above, these are larger
the more dispersed the underlying attributes are relative to the size of measurement errors. In particular, for
the limit case f = 1 the relative width is around 0.85 in the low signal-to-noise regime, 0.6 in the moderate one
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and around 0.5 in the high signal-to-noise one. As expected and in parallel, the actual coverage probability
tends to increase for conservative confidence intervals as signal dominates, while remaining close to 0.95 for
finite-population ones.
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FIGURE 2.1. Results for βn and the measurement model in equation (2.17): coverage (left) and width (right) of finite-
population (“FP”, solid lines) and superpopulation (“SP”, dashed lines) confidence intervals. Nominal coverage is set
to 0.95. Signal-to-noise ≈ 0.5.
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FIGURE 2.2. Results for βn and the measurement model in equation (2.17): coverage (left) and width (right) of finite-
population (“FP”, solid lines) and superpopulation (“SP”, dashed lines) confidence intervals. Nominal coverage is set
to 0.95. Signal-to-noise ≈ 1.5.
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FIGURE 2.3. Results for βn and the measurement model in equation (2.17): coverage (left) and width (right) of finite-
population (“FP”, solid lines) and superpopulation (“SP”, dashed lines) confidence intervals. Nominal coverage is set
to 0.95. Signal-to-noise ≈ 2.5.

2.5 Empirical illustrations

In this section, I illustrate how the methods in the previous sections allow for a systematic approach to uncer-
tainty quantification in finite populations by considering two setups that span the wide range of empirical
applications for which this chapter is relevant.

2.5.1 Predicting police violence

The first exercise is based on Montiel-Olea et al. (2021), which are interested in the determinants of the use of
deadly force by police officers in the United States. More generally, it is aimed at illustrating finite-population
inference in the microforecasting literature (??Giacomini et al., 2023), which is concerned with prediction
of individual outcomes in short panels.

Data and background. The authors collect data on all local police departments in the United States,
defined as those that serve a well-defined population. They use census records from the Law Enforcement
Agency Identifiers Crosswalk dataset (LEAIC), and the final dataset contains N = 7, 585 agencies.25 The
authors are interested in characterizing the determinants of police use of deadly force in the U.S. at the
department level and aim at retrieving comprehensive records for all such departments: f = 1 is arguably a
reasonable description of the sampling framework.

Here interest is a on a composite index θi for the agency-specific baseline level of lethal encounters, which
is specified as an exponential model including observed, candidate determinantsZi and unobserved, residual
attributes αi; see again equation (2.4). The measurement system is specified as a multiplicative (Poisson)

25The authors have made the data and code publicly available at https://github.com/jm4474/EmpiricalBayesCounterfactuals.

https://github.com/jm4474/EmpiricalBayesCounterfactuals
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model for the number of lethal encounters, which can be recovered by setting g0 = 0T and g1(Xi; δ) =

exp
(
Xiδ

)
in equation (2.5). In a slightly rearranged form, we have

Yit = αi exp
(
Z′
iβn + Xitδ

)
+ εit (2.18)

for t = 1, . . . , 6, corresponding to yearly measurements over 2013–2018. In the main specification, dimXit =

1 and Xit are murders per 100,000 population served. Throughout the period, 1, 179 agencies have at least
one lethal encounter, for a total number of 3, 504 homicides. The parameters of interest are γn = (δ, β′n)′.
The method-of-moments estimator γ̂ solves a moment condition of the form (2.9).26

The ultimate objects of interest are counterfactual lethal encounters for agency i that would obtain if
we were to replace some of its observed and unobserved intrinsic characteristics — encapsulated in Zi and
αi, respectively — with those of agency j. Since the latter remain unobserved, the authors propose an esti-
mator based on an Empirical Bayes approach, the Poisson model and the assumption of weakly dependent
measurements. For our purposes, what matters is that this is a known mapping of estimated coefficients to
the predicted number of lethal encounters:

Ŷ ∗
t (i, j, z) =

Ȳj + 1

exp
{
Z′
j β̂

} ∑T
t=1 exp

{
Xjt δ̂

} exp
{
z′β̂ + Xit δ̂

}
, (2.19)

where (i, j, z) denotes a counterfactual for agency i if it had the unobserved characteristics of agency j and
the observed characteristics z.27 For instance, Ŷ ∗

t (i, i, zj) are estimated counterfactuals for agency i with its
own unobserved determinants (interpreted as selection and training practices and departmental culture) and
with the observed characteristics of agency j.

Results. Table 2.1 reports the point estimates and standard errors for γ̂; the first row corresponds to Xit
and the subsequent entries correspond to the predictors Zi. The second and third columns report conven-
tional and finite-population standard errors, respectively. Conventional standard errors are based on stan-
dard method-of-moments variance estimators, which correspond to the diagonal entries of the square root
of V̂ (0) in equation (2.14). Finite-population standard errors are constructed by calculating V̂ (1) assuming
(conditionally) uncorrelated measurements, a maintained assumption in Montiel-Olea et al. (2021).

Table 2.1 shows that ignoring the finite-population dimension of the problem leads to standard errors
that are between 1.2 and 2.5 times larger than the finite-population ones, a byproduct of introducing sampling-
based uncertainty. For example, the standard error on the estimated coefficient associated to the poverty
share goes from 0.003 to 0.007. Differences in the magnitude of the change can be traced back to how each
particular predictor loads on signal-to-noise. Note that the standard errors on the coefficient associated to
murders per 100,000 population served are unchanged: the Finite Population Correction is zero for com-
mon parameters, along the lines of our discussion in Section 3.3.

26In particular, we have discussed how to write βn as a finite-population estimand in the sense of equation (2.5) in Remark
2.2. This leads to moment conditions for βn (given δ) as in eq. (10) in Montiel-Olea et al. (2021). For the common parameter δ, I
follow the authors and set A(Xi , δ) = X ′

i in the moment function in (2.8); see eq. (8) in Montiel-Olea et al. (2021).
27Note that the confidence intervals discussed in this application are valid for the counterfactual Empirical Bayes estimand

rather than the the infeasible one using the true θi , in the spirit of Ignatiadis and Wager (2022).
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TABLE 2.1. Estimates of the parameters in equation (2.18).

Coefficient Conventional s.e. FP s.e.

Murders per pop. (in hund. ths.) 0.005 0.003 0.003
Log of avg. pop. (in m.) 1.192 0.049 0.036
Officers per pop. (in ths.) 0.012 0.004 0.004
Gun death rate (%) 0.049 0.01 0.004
Share in poverty (%) 0.04 0.007 0.003
Share black (%) -0.024 0.004 0.002
Garner -0.031 0.127 0.102
LEOBR -0.05 0.113 0.066
Land area (sq. km. per m.) 1.0231e-05 1.1511e-06 7.4896e-07

Notes: The first row corresponds to the time-varying variable Xit in equation (2.18); the rest are
time-invariant predictors Zi . “Garner” are dummy variables indicating the severity of state laws
on the use of deadly force and “LEOBR” are dummy variables for state laws protecting police
from misconduct allegations, see Montiel-Olea et al. (2021) for additional details. “hund. ths.”
stands for “hundred thousands”, “m.” stands for ’millions’ and “sq. km.” for “square kilometers”.
The second and third columns report baseline standard errors (as in Montiel-Olea et al. (2021))
and finite-population standard errors for f = 1, respectively.

Importantly, this is just a first step towards computing counterfactuals. Statistical significance is not nec-
essarily of interest here; instead, Table 2.1 is relevant in that uncertainty in the estimated counterfactuals in
equation (2.19) stems directly from the covariance matrix of these estimated coefficients. The authors con-
sider different types of counterfactuals; here we focus on those of the form Ŷ ∗

t (i, j, zj), where both observed
and unobserved characteristics of agency i are replaced with those of agency j.28

Table 2.2 reports the results for four of the ten largest departments according to population served
(Phoenix, Chicago, Philadelphia and New York) and for these ten combined (“Totals”). A full list of coun-
terfactuals is reported in Appendix A.3.1. Note that Table 2.2 directly reports prediction intervals rather
than point estimates, calculated by drawing from the estimated asymptotic distribution. This is in line with
the authors’ emphasis on quantifying estimation uncertainty, something that makes this application par-
ticularly interesting for our purposes. Rows correspond to agency i and columns to agency j; the diagonal
elements are the actual number of realized lethal encounters during the period. For instance, we might ask
the following question:

“What would happen to the number of lethal encounters if all ten largest agencies had the department-specific

attributes of the Chicago Police Department?”

We can read this off Table 2.2: the 90% finite-population prediction interval is (565, 667), and the number of
lethal encounters is thus expected to increase from a (realized) baseline of 548 encounters during the period.
The answer to this question is however inconclusive if we were to calculate these prediction intervals as
if the U.S. local police departments were a small subset of a much larger superpopulation: the 90% finite-
population prediction interval increases to [545, 700]. Not only is the finite-population interval 34% smaller
than the conventional one, it also leads to substantively different policy directions for the questions that the
authors seek to answer.

28In particular, we consider the counterfactual values of Officers per pop., Gun death rate, Share in poverty, Garner and LEOBR
(see Table 2.1).
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The discussion here illustrates that finite-population inference identifies the right source of estimation
uncertainty for this problem — the fact that we only observe error-ridden measurements of agency-specific
baseline police violence — and that Finite Population Corrections can lead to substantially more precise and
meaningful uncertainty assessments.

TABLE 2.2. Counterfactual homicides: observed and unobserved determi-
nants (selection of departments)

Phoenix Chicago Philadelphia New York

Phoenix 93 [28,32] [21,30] [5,9]
(28,32) (23,28) (6,8)

Chicago [189,216] 63 [46,64] [12,19]
(190,214) (49,61) (13,18)

Philadelphia [89,130] [29,40] 28 [7,9]
(96,120) (30,38) (7,9)

New York [568,1013] [184,310] [175,236] 55
(643,870) (204,275) (180,228)

Totals [1689,2279] [545,700] [481,567] [125,166]
(548) (1791,2094) (565,667) (481,564) (134,155)

Note: The agencies above are a selection of those in Table A.1 in Appendix A.3.1,
which cover the ten largest departments by population served. Diagonal entries
are observed lethal encounters (totalling 548 encounters for the top ten depart-
ments). Off-diagonal entries are 90% confidence intervals for counterfactual val-
ues of lethal encounters Ŷ ∗

t (i, j, zj) in equation (2.19), which replace characteris-
tics of agency i in the rows with those of agency j in the columns; see the text for
additional details. Baseline prediction intervals (as in Montiel-Olea et al. (2021))
are reported in brackets and finite-population prediction intervals for f = 1 are
reported in parenthesis.

2.5.2 Misallocation

The second exercise is motivated by the large literature on resource misallocation, which is based on the ob-
servation that differences in aggregate TFP might not be driven solely by technology but also by allocative
efficiency. Following Hsieh and Klenow (2009), an extensive body of work has provided evidence of sub-
stantial heterogeneity in revenue productivity within industries, which under appropriate conditions can
be used to quantify the extent of misallocation. See Restuccia and Rogerson (2017) for a review.

Exploring the sources of misallocation and obtaining aggregate summary statistics requires a combina-
tion of rich microdata and careful measurement, which makes this an appealing framework to illustrate the
methods in this chapter. In remarkable contrast to the previous exercise, here the literature has often under-
stated or ignored estimation uncertainty.

Data and background. For illustration, consider the monopolistic competition framework in Hsieh and
Klenow (2009), where firms hire labor and capital in competitive markets, have Cobb-Douglas production
functions and might face output, capital or labor distortions such as output subsidies, differential access to
credit or labor market regulations. These create “wedges” relative to the efficient allocation, which manifests
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in heterogeneity in the marginal revenue product of capital and labor (MRPK and MRPL, respectively)
within a given industry.

Measuring these firm-level wedges is challenging. Even if marginal revenue products can be measured in
the data, within firm variation over short periods of time might reflect measurement errors, adjustment costs
or transitory shocks. A popular approach is to focus on persistent–transitory decompositions such as firm
fixed-effects in marginal revenue products as measures of these underlying wedges (David and Venkateswaran,
2019; Chen et al., 2022; Adamopoulos et al., 2022; Chen, Restuccia, and Santaeulàlia-Llopis, 2023; Nigmat-
ulina, 2023).

For this exercise, I use data from the Statistik Industri, an annual census of all formal manufacturing
firms in Indonesia with more than 20 employees. I follow Peters (2020), who focuses on firms that enter
after 1990 and is interested in heterogeneous markups — a particular form of misallocation — to motivate
a model of firm dynamics and market power.29

This leads to an unbalanced panel of about N = 17, 000 firms, which also comprise the population of
interest, for the period 1991–2000. Motivated by the literature above, I consider the following measurement
model for log labor wedges:

log �MRPLit = θi + εit , (2.20)

where log �MRPLit is log MRPL demeaned with respect to industry averages and where θi are firm-level
wedges.30 This is a natural formulation in a context where the distortions of interest are persistent market
features such as frictions or regulations.

I then use this framework to compute popular misallocation statistics. First, I explore the relationship
between labor distortions and firm size (labor force) in line with similar exercises in the literature (Gorod-
nichenko et al., 2021; Yeh et al., 2022). The finite-population estimands βn are then least-squares coefficients
from the projection of θi on firm size bins Zi; I group firms into ventiles according to their position in the
size distribution at entry.

Second, I calculate measures of allocative efficiency, or the aggregate TFP loss associated to the extent
of misallocation. An often-used formula that has a closed form expression under normality (Hsieh and
Klenow, 2009; Gorodnichenko et al., 2021) is

d log TFP = −
(
α(1 − α)

2
+ (1 − α)2σ

2

)
Varn

(
θi
)
, (2.21)

where 1 − α is the labor share and σ is the elasticity of substitution. (I follow Hsieh and Klenow (2009) and
set σ = 3 and α = 0.33.) The finite-population estimand here is βn = Varn

(
θi
)
, the dispersion of labor

wedges across firms in the economy.

29Many firm surveys in developing countries have such a size-based/formal employer cutoff. This qualifies the population of
interest and complicates measuring the extensive margin. Peters (2020) argues that a new firm in the census is also an entrant to
the relevant product markets to the extent those are the ones formal firms compete in; see Section 3.1 in the chapter for additional
discussion. The data and replication files are available online at https://onlinelibrary.wiley.com/doi/full/10.3982/ECTA15565.

30In particular, under Hsieh and Klenow (2009) marginal revenue products can be measured up to scale via average revenue
products, which are directly available in most datasets. As usual, labor wedges are here identified up to a normalization with
respect to other firm-level frictions. Here labor is measured via the wage bill instead of the number of employees and log MRPL
is demeaned with respect to narrowly-defined industry indicators and time dummies, following Peters (2020). Finally, note that
model (2.20) is a representative specification, but more general formulations are possible along the lines of Section 3.3.

https://onlinelibrary.wiley.com/doi/full/10.3982/ECTA15565
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As discussed in Remark 2.8, our baseline setup does not allow for such objects without further assump-
tions: while conceptually the problem is identical, the class of estimands considered rules out nonlinear
transformations of the latent attributes. In Appendix A.2.2, I extend the framework to cover Varn

(
θi
)

in
the context of this application. The corresponding Finite Population Corrections rely on the same notion of
weak dependence across measurements as in Assumption 2.1 and do not require additional measurements.
We do need to limit the higher order dependence of measurement errors on latent attributes. This is not
surprising: similar assumptions are needed in any deconvolution-like exercise when interest is in nonlinear
features or higher-order moments, see Arellano and Bonhomme (2012) for further discussion.

Results. Figure 2.4 show the estimated relationship between labor wedges and firm size at entry, together
with finite-population confidence intervals under the benchmark of conditionally uncorrelated measure-
ments.31 I also report the confidence intervals that would obtain if we were to treat the population of young
formal Indonesian firms as a negligible fraction of some hypothetical superpopulation.

FIGURE 2.4. Labor wedges across the distribution of firm size at entry (relative to 5th percentile). 95% confidence
bands (finite-population and conservative) are displayed together with the point estimates.

Overall, the results suggest a positive relationship between labor-related distortions and firm size, which
might be indicative of size-dependent regulations that tend to distort the optimal allocation of labor (Guner
et al., 2008). Estimation uncertainty is however not negligible: the relationship is quite noisy overall, and
not statistically significant up to the 35% percentile. Ignoring uncertainty altogether would seem to suggest
a stronger positive relationship; treating the population as a small sample from an infinite superpopulation
would rule out much of a relationship in the bottom half of the distribution. Instead, finite-population in-

31This exercise also illustrates the applicability of our methods to unbalanced panels, with data missing at random. In par-
ticular, note that Assumption 2.1 applies unit-by-unit, and that the finite-population adjustments only appear in the unit-level
weighted contributions to the variance in equation (2.13). As such, a simple modification to our framework allowing for unit-
specific selection matrices Si,(m) according to the number of available measurements (and similarly for projection matrices) would
do.
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ference correctly identifies the nature of estimation uncertainty in this context — the measurement problem
in model (2.20).

Consider now βn = Varn
(
θi
)

and let Yit = log �MRPLit and Ȳ = N−1 ∑n
i=1 RiȲi. In empirical work,

an often-reported object is the variance of the estimated firm fixed effects, which ignores the measurement
problem:

β̃ =
1
N

n∑︁
i=1

Ri

(
T−1

T∑︁
t=1

Yit − Ȳ

)2

.

Consider the following alternative. Let Q∗
i = IT 2 − T−21T 2×T 2 and define S(T ) as the selection matrix that

has zeros everywhere but at positions (1, 1), (T+2, 2), . . . , (T 2, T ). Letting Ŷ ∗
i =

(
Yi − 1T Ȳ

)
⊗

(
Yi − 1T Ȳ

)
,

a consistent estimator of the population-wide dispersion in θi is

β̂ =
1
N

n∑︁
i=1

RiT
−21′

T 2

[
IT 2 − S(T )

(
Q∗
i S(T )

)†
Q∗
i

]
Ŷ ∗
i . (2.22)

Note that we are now imposing independence over measurements at the estimation step — a form of As-
sumption 2.1 (Arellano and Bonhomme, 2012). See again Appendix A.2.2 for additional details. Given this,
an estimate of d log TFP in equation (2.21) is readily available. I explore the evolution of this measure of al-
locative efficiency at entry over 1991–1999, analogous to similar exercises in empirical work (García-Santana,
Moral-Benito, Pijoan-Mas, and Ramos, 2020; Bils, Klenow, and Ruane, 2021).32 Through the lens of this
framework, I characterize the second moments of a sequence of evolving finite populations.

Figure 2.5 shows the results for firms in the bottom quartile of the size distribution, a group for which
labor-related distortions do not seem to differ systematically based on the number of employees.

The figure shows that the aggregate productivity losses from misallocation (if the economy-wide dis-
tortions were like those of entering firms) are of the order of 12–15%, with a slight upward trend over time.
Importantly, this is a revised down estimate of around five percentage points in every cohort relative to the
standard calculation that does not take the measurement problem into account (reported in gray in the fig-
ure). This is also lower than the observed dispersion in MRPL in the data (around 40% in terms of equation
(2.21)). These magnitudes are broadly consistent with conventional wisdom that a large part of observed dis-
persion in total factor revenue productivity is in the firm fixed effect, but emphasize the role of measurement
error and transitory shocks. Furthermore, these differences are statistically significant, but estimation uncer-
tainty is here far from negligible: as an example, the change in TFP is within a confidence band of 14–20%
for the 1999 cohort. In fact, the difference relative to the uncorrected estimates is only marginally significant
if one were to add sampling uncertainty on top of the finite-population confidence bands.

In Appendix A.3.2, I report additional results allowing for dependence over measurements, with similar
implications. If anything, finite-population confidence intervals tend to be wider. This stresses the impor-
tance of finite-population inference in this context — where sampling uncertainty is indeed small (even if
one treats the population as a negligible fraction of some hypothetical superpopulation) while measurement

32Specifically, I calculate (2.22) for each entry cohort over this period. Note that we still use all measurements for each firm in
estimation — this is what allows us to separate the persistent component from measurement errors. Finally, note that in order to
calculate (2.22) at least two (independent) measurements are needed, which means that we cannot report results for firms in the
2000 cohort.
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FIGURE 2.5. Evolution of allocative efficiency as in equation (2.21) for each cohort (within firms in the bottom size
quartile). Cohorts refer to the year of entry but all repeated measurements for each firm are used in estimation. 95%
confidence bands (finite-population and conservative) are displayed together with the point estimates.

uncertainty remains sizeable.
All in all, these results illustrate that the methods presented in this chapter provide guidance on the

relevant sources of estimation uncertainty yet again — this time in a context where the contrast between
sampling and measurement is particularly salient and where the conventional approach to inference has
been to understate rather than exaggerate estimation uncertainty.
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CHAPTER 3

MICRO RESPONSES TO MACRO SHOCKS

WITH MARTÍN ALMUZARA

3.1 Research context

Applied macroeconomists are increasingly interested in empirical estimates of the transmission of aggregate
uncertainty to individual outcomes, often in the form of impulse responses.

A popular approach is to formulate estimating equations of the form

Yi,t+h = β(h)siXt + controls + vh,it , (3.1)

where Yit is a micro outcome for unit i (i = 1, . . . , N ) at time t (t = 1, . . . , T ), such as household income
or firm sales, and Xt an observed macro shock of interest, such as a monetary policy or oil supply shock.
Shocks are often interacted with unit-level covariates si to document heterogeneity in transmission along
observables. Estimates β̂(h) of the response at horizon h are then obtained via least squares; a panel local
projections version of Jordà (2005).

Despite its routine application, little is known about the statistical properties of β̂(h). The way standard
errors are computed in the empirical literature illustrates it well: in our own survey of almost 50 recent pa-
pers, around half compute two-way clustered standard errors, one-third cluster within units only, and many
others resort to Driscoll and Kraay (1998). This reflects the vastly different ways in which researchers perceive
the nature of shocks, the role of each dimension of the panel for precision, and the importance of aggregate
variation in the data.

In this chapter, we provide the first treatment of estimation and inference for this problem. We show
how to interpret β̂(h) when impulse-response heterogeneity is unrestricted and propose standard errors and
confidence intervals that are easy to compute and robust to the signal-to-noise of macro shocks in the mi-
crodata. As a result, a very simple recipe for inference emerges: clustering standard errors at the time level
and ex-ante including sufficient lags as controls. We refer to this strategy as time-clustered lag-augmented

37
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heteroskedasticity-robust (t-LAHR) inference.
We establish our results in a comprehensive setup that features observed and unobserved macro and

micro shocks, cross-sectional heterogeneity in responses, general forms of serial dependence in outcomes,
and unrestricted signal-to-noise. We first show that β̂(h) recovers the slope coefficient of a population linear
projection of unit-specific impulse responses on characteristics si, thereby formalizing what practitioners
have in mind when including interactions in equation (3.1). If si = 1, the estimand boils down to the average
response in the population. Notably, since we place no restrictions on the underlying impulse-response
heterogeneity or si, our characterization of the estimand is in effect nonparametric.1

Signal-to-noise. The degree of signal-to-noise of macro shocks in the microdata is a crucial parameter
of the problem. Here, it is common shocks to all units that drives identification, and how sizable they are
relative to micro shocks determines both the strength of identifying variation and the extent of unaccounted-
for spatial dependence.2 The notion of different signal regimes also reflects the scope of empirical work,
which takes interest in atomistic and granular agents, administrative and narrow datasets, unit-specific and
aggregate regression controls, etc.

Hence, one of our key contributions is to introduce a novel asymptotic framework where the signal value
of aggregates may be arbitrarily low (or high) in the limit. We achieve this by indexing the relative standard
deviation of macro to micro shocks by a parameter κ that can drift with the sample size. This device allows
for a range of data generating processes (DGPs) in which estimation uncertainty is dominated by micro-level
terms, a combination of micro and macro errors, or aggregate components only.3 On the contrary, standard
asymptotic plans where κ is fixed only capture the latter and ignore idiosyncratic shocks, potentially leading
to poor approximations in small samples. It is clear then that the nature of estimation error depends on κ

and the question is whether inference procedures are robust to different macro signal regimes. Our main
result is that t-LAHR inference is uniformly valid over κ, in other words, t-LAHR confidence intervals have
correct asymptotic coverage for the (nonparametric) local projection estimand uniformly over κ.

Inference. The key assumption in our framework is the availability of an observed macro shock Xt. Our
notion of shocks is that of mean independent innovations with respect to both its own lags and leads and
other shocks, in line with the time series literature on local projections inference (Stock and Watson, 2018;
Montiel Olea and Plagborg-Møller, 2021). We first focus on the case where the shock of interest is observed
— an assumption prevalent in most empirical applications — and then consider settings where the shock of
interest is recoverable (spanned by Xt and its lags) or contaminated with measurement error but a proxy is
available (as in local projection-instrumental variable estimators; LP-IV for short).4

1We discuss extensions to (exogenous) time-varying characteristics sit in Section 3.3 (Remark 3.7).
2It is immediate that if si = 1 in equation (3.1), including time fixed effects causes collinearity. If si varies over units, for time

indicators to remove all additional aggregate variation one would need the untenable assumption that only impulse responses toXt
at horizon h are heterogeneous. In our exposition, we always allow for time indicators as controls when si displays cross-sectional
variation.

3Our approach also resonates with the renewed interest on the potential for unit-level shocks to explain aggregate fluctuations,
as in Gabaix (2011) and subsequent literature. Our device to obtain non-negligible micro errors is closer to Jovanovic (1987) in that
we rely on scaling micro variation up rather than on fat-tailed distributions. However, we conjecture that similar inference results
can be obtained in the latter under appropriate regularity conditions.

4Examples of popular identification methods include narrative approaches (as in Crouzet and Mehrotra, 2020, for monetary
policy shocks), high-frequency identification (as in Känzig, 2021, for oil supply shocks) or a combination of Cholesky/structural
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The macro and shock nature of Xt delivers the following observation which serves as a guiding principle
throughout the chapter: panel local projections with macro shocks are equivalent to synthetic time series
local projections with an appropriately aggregated dependent variable. This is true even if shocks interact
with covariates si and if unit and time effects are included. Therefore, aggregating the microdata by col-
lapsing the cross-sectional dimension of the panel and treating it as a time series delivers valid inference for
any κ.5 This is precisely what t-LAHR inference does, since time-level clustering in the panel problem and
heteroskedasticity-robust inference in the synthetic time series problem are essentially equivalent.

The macro and shock nature of Xt also clarifies the role of lag augmentation. In a panel local projec-
tion that controls for p lags of siXt, the regression scores (the product of shocks and residuals) are nearly

uncorrelated even if residuals are not. Specifically, they are a moving average of order h where the first p au-
tocovariances are zero and the remaining ones are independent of κ. This has two major implications. First,
it confers a double layer of simplicity to inference: up to horizon h ≤ p, there is no need for unit-level clus-
tering or heteroskedasticity and autocorrelation robust (HAR) approaches to deal with serial dependence.
Second, it explains why t-LAHR inference might have only small coverage distortions even for horizons ex-
ceeding p: these distortions depend on the size of the autocorrelation coefficients of the score, which are
small in low-signal environments. In fact, if the DGP is well approximated by a low-order vector autoregres-
sion (VAR), we prove t-LAHR inference is uniformly valid over both κ and h ∝ T , a result reminiscent of
those in Montiel Olea and Plagborg-Møller (2021) for time series local projections.

We complement our theoretical results with simulations for realistic designs and sample sizes, allowing
for moderately long horizons and substantial persistence in micro shocks. We study the performance of a
battery of approaches, including an alternative to t-LAHR that substitutes lag augmentation with HAR
inference, and incorporating small-sample refinements (Müller, 2004; Imbens and Kolesár, 2016; Lazarus,
Lewis, Stock, and Watson, 2018). We find that t-LAHR inference shows remarkable performance relative
to all other competitors, particularly in low-signal environments, in near non-stationary scenarios, and over
moderate horizons even if we do not impose a VAR on outcomes.6 In practice, we recommend to supple-
ment t-LAHR inference (controlling for a reasonable number of lags of both outcome and shock variables)
with the refinement proposed by Imbens and Kolesár (2016).

Empirical survey and illustration. We reviewed a large body of empirical research that precedes our
work. The typical application uses administrative data for firms, tracks units at the quarterly or annual
frequency for a limited number of periods, and estimates impulse responses to monetary policy shocks via
local projections. Most applications include interactions of the form siXt and both unit and time fixed effects,
but vary widely in the number and nature of additional controls.7

VAR restrictions (as in Drechsel, 2023, for firm investment shocks). See Ramey (2016, Section 2.3) for a review of identification
methods in macroeconometrics.

5This synthetic time series representation is also illustrative of the fact that the concentration rate of the estimation error is
at most T −1/2, even in situations where N ≫ T . This suggests caution regarding the conventional wisdom in many empirical
applications that a larger cross-sectional dimension somehow compensates for a shorter time series.

6It is known that ad-hoc parameter choices and small-sample biases in sample autocovariances contribute to the subpar rela-
tive performance of HAR estimators (Herbst and Johansenn, 2023).

7We reproduce the full list in Appendix B.3 which includes 47 empirical papers that run panel regressions with macro shocks.
A few focus on the case h = 0 only, but the vast majority compute impulse responses over several horizons. The economic
content ofXt is very diverse, including fiscal policy shocks, investment shocks, TFP and innovation shocks, carbon pricing shocks,
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In otherwise comparable empirical designs, we document large dispersion in the way practitioners com-
pute standard errors: among 47 different papers, 24 compute two-way clustered standard errors (within
units and time), 15 cluster within units only, 7 use Driscoll and Kraay (1998) and 1 clusters within time only.

These choices reflect very different views on the dominant sources of statistical uncertainty, from ruling
out serial dependence to ruling out spatial dependence; from a suggestion that both unit-level and aggre-
gate dynamics need to be accounted for to an explicit stance that either of the two dominates. Often these
choices are made with little discussion or citing previous work as justification.8 Our framework allows us to
revisit them. First, off-the-shelf autocorrelation consistent methods such as Driscoll and Kraay (1998) leave
information on the table (the autocovariance function of the regression scores is known), which comes at
a cost in small samples. Second, validity in the case where standard errors do not explicitly adjust for serial
dependence (as in two-way clustering) boils down to whether a reasonable number of lags was included in
estimation. Third, clustering within units is superfluous, even in low-signal regimes where the size of unit-
level dynamics is comparable to that of aggregates. Fourth, clustering only within units breaks down even
in the face of small amounts of spatial dependence induced by aggregate shocks (that is, moderate-signal en-
vironments). In fact, we offer a way to reinterpret these confidence intervals as providing valid inference for
an estimand indexed to the actual realizations of aggregate shocks during the sample period.

Finally, we illustrate our methods in an empirical exercise inspired by a booming literature that inves-
tigates the role of financial frictions and firm heterogeneity in the transmission of monetary policy.9 The
exercise highlights the importance of the choice of inference method, and the value of the synthetic time
series representation as a way to gain intuition about the source of identifying variation.

Related literature. This chapter contributes to various strands of the literature.
First, it relates to the time series literature on inference for local projections (Hansen and Hodrick, 1980;

Jordà, 2005; Stock and Watson, 2018; Montiel Olea and Plagborg-Møller, 2021; Lusompa, 2023; Xu, 2023;
Montiel Olea, Plagborg-Møller, Qian, and Wolf, 2024). Relative to this literature we are (to our knowledge)
the first to deal with the panel data case with aggregate shocks.10

In a time series finite-order VAR setup, Montiel Olea and Plagborg-Møller (2021) show the uniform
validity of heteroskedasticity-robust inference on lag-augmented local projections over the persistence in
the data and horizon h. They also postulate mean independent innovations, the same type of assumption

temperature shocks, etc. In these applications, the cross-sectional dimension is usually orders of magnitude larger than the effective
time-series dimension. In our review we leave out empirical work with very small cross-sections where entities are meaningful and
a unit-by-unit treatment is feasible. Nonetheless, when these units are pooled together, as in Fukui, Nakamura, and Steinsson
(2023), our results still apply.

8The availability of a large cross-sectional dimension and the interaction of shocks with covariates si are also often argued as
sources of large gains in statistical precision, also reflecting an implicit stance on the presence of macro shocks. We elaborate on
the (im)plausibility of these notions in Remark 3.5.

9For instance, Crouzet and Mehrotra (2020), Ottonello and Winberry (2020), Anderson and Cesa-Bianchi (2024) and Jeenas
and Lagos (2024) target impulse responses of firm investment to monetary policy shocks interacted with external covariates si such
as firm size, default risk or stock turnover.

10Our results on limited serial dependence in regression scores relate to the earlier multi-step forecast literature (Hansen and
Hodrick, 1980), which relied on including infinitely many lags to ensure that the forecast errors have a MA(h) representation. In
the local projection context, Jordà (2005) arrived at a similar result under a finite-order VAR model while Lusompa (2023) provided
a recent reformulation. Instead, we exploit the orthogonality properties of macro shocks to show that the scores have MA(h)
dynamics. The distinction is reminiscent of the difference between design-based and model-based/conditional unconfoundedness
assumptions.
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we impose on Xt. Our Proposition 3.2 (and, more generally, Section 3.3.3) can be interpreted as the panel
version of their results. Nonetheless, our focus is on uniformity with respect to the macro signal-to-noise
κ, which has no obvious counterpart in the time series setup, and we derive most of our results without
assuming a VAR model.

Second, we contribute to the literature on estimation and inference with aggregate shocks. Using stylized
models, Hahn et al. (2020) bring attention to the drastic consequences of drawing inferences from short
panels with aggregate uncertainty. Although our focus is on thought experiments where macro shocks are a
key source of identification, we can connect to their results by reinterpreting confidence intervals that exploit
independence across units as valid for an approach to inference that conditions on the path of aggregate
shocks.

Recent additions to this literature study regional-exposure designs where the researcher has access to
low-rank instruments of the form siXt (si are region-specific exposures to aggregate conditions) and so the
reduced-form equation looks like (3.1) for h = 0. Arkhangelsky and Korovkin (2023) argue that exogenous
variation comes from the time series shockXt and focus on threats to instrument validity, whereas Majerovitz
and Sastry (2023) consider either si orXt as sources of identification and suggest that inference needs to take
spatial dependence into account in the latter case. Our work extends these ideas by giving formal inference
results that cover dynamic responses and different macro signal environments.

Third, this chapter relates to the cross-sectional dependence literature that studies models where the
scores feature varying degrees of spatial dependence (Driscoll and Kraay, 1998; Andrews, 2005; Pesaran, 2006;
Gonçalves, 2011; Pakel, 2019). Our framework falls in the polar case where the shock of interest only varies
over time, precluding solutions based on partialling out the common component from the regressors, as in
Pesaran (2006). Moreover, our uniformity result (which translates into robustness to the degree of spatial
dependence) is new to the literature.

Outline. Section 3.2 provides an overview of our results in a simple static model, illustrating the role of
aggregate shocks and their signal relative to micro shocks. Section 3.3 presents our main inference result in a
general, heterogeneous dynamic model. Section 3.4 discusses a comprehensive simulation study and Section
3.5 the empirical illustration. Proofs can be found in Section A.1 with additional details in the Appendix. A
Matlab code repository is available online.11

3.2 Simple model

We illustrate the main points of the chapter in a simple, static regression model with homogeneous responses.
We keep the exposition simple and omit technical details with the goal of building insights. The more general
setup is studied in Section 3.3.

11https://github.com/TinchoAlmuzara/PanelLocalProjections.

https://github.com/TinchoAlmuzara/PanelLocalProjections
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Model assumptions. We observe a micro outcome Yit and a macro shock Xt for units i = 1, . . . , N and
over periods t = 1, . . . , T . They are related by

Yit = β0Xt + vit ,
vit = Zt + κuit ,

(3.2)

where vit is an error term including both aggregate and idiosyncratic unobservables, denoted Zt and uit,
respectively. Here κ regulates their relative importance in the micro data, as explained below. The goal is to
estimate and do inference on β0.

This simple model is a stylized representation of an empirical setting where we are interested in the trans-
mission of aggregate uncertainty to individual outcomes; the effect of Xt on Yit. Examples of the former in-
clude changes in interest rates, tax regulations or oil prices, which might leave a mark on household consump-
tion, worker’s labor income or firm sales. In fact, one could entertain any combination of macro variables
and micro outcomes in these examples. When interest centers around one aggregate variable — captured by
Xt — it would be hard to ex-ante rule out the presence of any others — embedded inZt. This basic premise
is at the core of the our results.

We now make two sets of assumptions, later generalized in Section 3.3 to allow for observable and unob-
servable heterogeneity, and more flexible dynamics.

Assumption 3.S3 (Stationarity and iidness in the simple model).

(i) {Xt , Zt , {uit}Ni=1}Tt=1 is stationary.

(ii) {{uit}∞t=−∞}Ni=1 are i.i.d. over i conditional on {Xt , Zt}Tt=1.

Assumption 3.S3(i) implies Yit is stationary too. Assumption 3.S3(ii) simply assigns the role of inducing
cross-sectional dependence in the error term vit to Zt.

12

Assumption 3.S4 (Shocks and independence in the simple model).

(i) E
[
Xt

���{Xτ}τ≠t , {Zτ , {uiτ}Ni=1
}T
τ=1

]
= 0.

(ii) E
[
Zt

���{Zτ}τ≠t , {Xτ , {uiτ}Ni=1
}T
τ=1

]
= 0.

(iii) E
[
uit

���{uiτ}τ≠t , {Xτ , Zτ}Tτ=1

]
= 0.

Assumption 3.S4 implies Xt, Zt and uit are mutually unpredictable and serially uncorrelated. Assump-
tion 3.S4(i) is ultimately an identification condition, whereas 3.S4(ii) and 3.S4(iii) are made for symmetry.
Indeed, mutual unpredictability of macro shocks lies at the core of macroeconometrics and is typically neces-
sary to give structural interpretation to impulse-response calculations (see, for instance, Ramey, 2016; Stock

12Both assumptions can be relaxed; we briefly discuss departures from 3.S3(i) in Section 3.3 and 3.4. Allowing for weak spatial
dependence in uit in place of 3.S3(ii) is also possible with minor modifications.
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and Watson, 2016; Plagborg-Møller and Wolf, 2021).13 Assumption 3.S4(i) is an empirically realistic starting
point, since in the majority of applications Xt is the (perhaps noisy) measurement of a shock.

Remark 3.1 (Relaxing Assumption 3.S4). In practice, we might only observe a proxy shock X∗
t , which

may be contaminated with measurement error or possess some residual autocorrelation structure, say X∗
t =∑k

ℓ=1 αℓX
∗
t−ℓ + Xt for known k < ∞. These cases can be handled by treating X∗

t as an instrument — a panel
version of the LP-IV estimator (Stock and Watson, 2018, Section 1.3), which we study in Section 3.3.4 — or
by including lags of X∗

t as controls, see also Section 3.3.3.

Estimation and inference. A natural estimator of β0 is pooled least squares,

β̂ =

∑N
i=1

∑T
t=1 XtYit∑N

i=1
∑T
t=1 X

2
t

=

∑T
t=1 Xt

(
N−1 ∑N

i=1 Yit

)
∑T
t=1 X

2
t

,

which is also a panel local projection (LP) estimator at horizon h = 0 and the estimator in a time series
regression involving the synthetic outcome Ŷt = N−1 ∑N

i=1 Yit and Xt. The double nature of β̂ as panel and
time series estimator arises naturally in the presence of macro shocks, as we further demonstrate in Section
3.3.

Denote the residual by ξ̂it = Yit − β̂Xt. A key takeaway from this chapter is that a reliable approach to
inference uses the time-level cluster heteroskedasticity-robust standard error σ̂ , given by σ̂2

= V̂/T Ĵ 2 where
Ĵ = (NT )−1 ∑N

i=1
∑T
t=1 X

2
t = T−1 ∑T

t=1 X
2
t is the least squares denominator and

V̂ =
1
T

T∑︁
t=1

(
1
N

N∑︁
i=1

Xt ξ̂it

)2

.

Another sign of the duality between panel regressions with aggregate shocks and time series regression is that
σ̂ is also the usual Eicker–Huber–White standard error computed using the synthetic time series residuals
ξ̂t = N−1 ∑N

i=1 ξ̂it.

As mentioned in the Introduction, two popular inferential choices in applications are based on one-
way (unit-level) cluster and two-way (unit- and time-level) cluster standard errors, σ̂1W and σ̂2W , given by
σ̂2

1W = V̂1W/T Ĵ 2 and σ̂2
2W = V̂2W/T Ĵ 2 where

V̂1W =
1
N

N∑︁
i=1

(
1
T

T∑︁
t=1

Xt ξ̂it

)2

, V̂2W = V̂ + V̂1W − 1
NT

T∑︁
t=1

N∑︁
i=1

X2
t ξ̂

2
it .

These standard errors reflect different concerns about the nature of estimation error or, more precisely, the
correlation of the regression score Xtvit over units and time.

13Mean independence assumptions with respect to past and future innovations are a slight strengthening of the more standard
martingale difference assumptions, and are convenient in representations where both leads and lags of the variable might enter
the model, cf. Montiel Olea and Plagborg-Møller (2021, Assumption 1) in a similar context of local projection inference. This still
allows for dynamics on the second- or higher-order moments given the paths of other shocks. It permits that, say, monetary, fiscal
or oil supply shocks (Xt , Zt) increase the variance of household-level income (Yit) via higher order dynamics in uit .
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Substituting (3.2), the estimation error decomposes as

β̂ − β0 =

∑T
t=1 XtZt∑T
t=1 X

2
t︸      ︷︷      ︸

Op(1)

+ κ
√
N

(
1

√
N

∑N
i=1

∑T
t=1 Xtuit∑T

t=1 X
2
t

)
︸                      ︷︷                      ︸

Op(1)

, (3.3)

i.e., as the sum of macro and micro components. The former induces cross-sectional correlation while the
latter is uncorrelated across units and both have limited serial dependence — for t ≠ τ, E

[
XtZt · XτZτ

]
=

E
[
Xtuit · Xτuiτ

]
= 0 by Assumption 3.S4(i) and iterated expectations.14 This is a direct consequence of Xt

being a shock.
The intuition for why σ̂ gives valid inference is the following. If the macro term is not asymptotically

small, Xtvit displays correlation over i but not over t, the type of situation for which σ̂ is designed. If, on
the other hand, the micro term dominates, Xtvit is uncorrelated over both i and t. Yet σ̂ still works: while
it does not impose that the cross-sectional covariances of Xtvit are zero, it will correctly estimate them to be
zero. One may wish to switch to a non-clustered heteroskedasticity-robust standard error in that case, but
we show both analytically (Proposition 3.1) and in simulations (Section 3.4) that there is no loss in simply
using σ̂ .

Clearly, correlation over t at the unit-level is never a concern; that is why unit-level clustering either fails
or is not needed. In fact, σ̂1W is asymptotically equivalent to the non-clustered standard error, and the same
holds for σ̂2W and σ̂ .

Macro-micro signal-to-noise ratio. Which term dominates the decomposition (3.3) will depend upon
κ/
√
N . We now provide another interpretation of this quantity. Consider the average outcome Ŷt =

N−1 ∑N
i=1 Yit and, for the sake of illustration, suppose Var

(
Zt

)
= Var

(
uit

)
= 1. By Assumptions 3.S3

and 3.S4, the proportion of the variance of Ŷt explained by the unobserved macro error can be measured as

R̄2(κ) = 1 −
Var

(
Ŷt

��Xt , Zt)
Var

(
Ŷt

��Xt) =
1

1 + κ2/N
, (3.4)

that is, the signal-to-noise ratio is O(N/κ2). It increases with N since cross-sectional averaging reduces the
variance from idiosyncratic errors, but decreases with |κ|.

We will study estimation and inference in sequences of data generating processes (DGPs) where κ is
allowed to grow asT,N → ∞. This leads, in essence, to three regimes. If κ/

√
N = o(1), (such as if κ is fixed),

R̄2(κ) → 1 and macro shocks are the only source of aggregate variation; we call this the asymptotically high-
signal case. If κ ∝

√
N , R̄2(κ) is bounded away from 0 and 1 in the limit and both macro and micro shocks

matter for aggregate fluctuations; this is the asymptotically moderate-signal case. Finally, if κ/
√
N diverges,

R̄2(κ) → 0, macro shocks are imperceptible and we are in the asymptotically low-signal case.15

14The lack of serial correlation would remain true even if Zt and uit were serially correlated.
15Of course, letting κ grow with the sample size should not be taken literally — it is simply a device to ensure our approxima-

tions suitably interpolate between high and low signal-noise environments. This type of embeddings are common in economet-
rics; an example which also has a low-signal interpretation is weak IV (Staiger and Stock, 1997).
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The intuitive notion of κ-regimes has a natural counterpart in our asymptotic approximations, in that
there is a close relation between the contribution of macro shocks to Ŷt and the nature of estimation error for
β0, as illustrated by (3.2) and (3.4). In particular, the macro term dominates in the high-signal case, the micro
term dominates in the low-signal case, and they are roughly balanced in the moderate-signal case. Moreover,
it is not always possible to consistently detect what κ-regime applies. It is important then to derive inference
procedures that are robust in the sense of uniform validity with respect to κ.16

Uniformity over κ. From the decomposition in (3.3), lettingN,T → ∞ and under regularity conditions
specified in Section 3.3,

σ0(κ)−1√T
(
β̂ − β0

) d−−−−−→ N (0, 1),

where

{
E

[
X2
t

]}2 × σ0(κ)2
=


E

[
X2
t Z

2
t

]
, if κ/

√
N → 0,

E
[
X2
t

(
Z2
t + κ̄2u2

it

)]
, if κ/

√
N → κ̄,(

κ2/N
)
E

[
X2
t u

2
it

]
, if κ/

√
N → ∞,

This shows two things. First, the rate of concentration of the estimation error β̂ − β0 is either
√
T in the

high- and moderate-signal cases or
√
NT/κ (i.e., slower than

√
T and possibly even zero, thus making β̂

inconsistent) in the low-signal case. Second, the asymptotic distribution of β̂ changes discontinuously across
κ-regimes.

Despite the discontinuity, our main result is that the (1 − α) confidence interval Ĉα =

[
β̂ ± z1−α/2σ̂

]
,

where zq is the q-quantile of the standard normal distribution, has correct coverage for β0 uniformly over κ,

lim
T,N→∞

sup
κ

���Pκ (
β0 ∈ Ĉα

)
− (1 − α)

��� = 0. (3.5)

where Pκ denotes probabilities for a DGP with a given κ. This is much stronger than pointwise validity, as it
implies that the quality of the asymptotic approximation to the coverage probability of Ĉα is itself robust to
the κ-regime. Statement (3.5) also means that if sample information about macro shocks is extremely scarce
and β̂ is inconsistent, the length of Ĉα adjusts as needed to reflect the weak macro signal.

One might wonder how much the static nature of (3.2) limits these results. The rest of the chapter
will show that they extrapolate to a substantially more general and empirically realistic framework with rich
forms of dynamics and heterogeneity.

Remark 3.2 (Inference conditional on aggregate shocks). Ignoring the unobservable macro component
in (3.3) when doing inference is equivalent to conditioning on its realization. In that situation, σ̂1W is a valid
standard error for responses defined by moment restrictions that condition on the realized path of aggregate

16We will consider inference procedures that are invariant to rescaling. It follows that all of our results can be equivalently
obtained in an embedding that scales down the macro component of the model in (3.2) by κ−1. Put differently, what matters is
the relative size of macro and micro components.
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shocks during the sample period.17 In general, this induces an internal/external validity trade-off whereby
practitioners may be able to pin down certain parameters very precisely but these might lack generalizability
to other contexts.

3.3 General case

In this section, we establish estimation and inference results for impulse responses to aggregate shocks in a
general setup featuring observed and unobserved, macro and micro shocks, and unrestricted heterogeneity
of individual responses.

We introduce the setup in Section 3.3.1 and state the main results in Section 3.3.2. We treat the important
case of finite-order VAR DGPs in Section 3.3.3 and local projections with instrumental variables (LP-IV) in
Section 3.3.4. Proofs are developed in Section A.1 with technical lemmas in Appendix B.1.

3.3.1 Setup

The researcher observes an outcome Yit, an aggregate shock Xt and characteristics si for units i = 1, . . . , N
and over periods t = 1, . . . , T . Everything is scalar but it is straightforward to extend the results to the
multivariate case. We assume

Yit = μi +
∞∑︁
ℓ=0

βiℓXt−ℓ + vit , (3.6)

vit =
∞∑︁
ℓ=0

γiℓZt−ℓ + κ
∞∑︁
ℓ=0

δiℓui,t−ℓ , (3.7)

where Zt and uit are unobserved serially uncorrelated aggregate and idiosyncratic errors. We denote βi =
{βiℓ }∞ℓ=0, γi = {γiℓ }∞ℓ=0, δi = {δiℓ }∞ℓ=0 and θi = {μi, βi, γi, δi}. These are draws from a cross-sectional distribu-
tion and below we specify conditions so that the infinite sums in (3.6)-(3.7) are well defined with probability
one.

Here, θi traces out cross-sectionally heterogeneous responses to both aggregate and idiosyncratic shocks,
and access to external variables si allows the researcher to study their transmission along unit-level observ-
ables. Our premise is that there is usually more heterogeneity in θi than can be explained by si alone and our
goal is to characterize estimation and inference in that context.

As in Section 3.2, we consider a range of DGPs indexed by κ to cover different signal-to-noise environ-
ments. We also make the following assumptions:

Assumption 3.1 (Stationarity and iidness).

(i) {Xt , Zt , {uit}Ni=1}∞t=−∞ is stationary conditional on {θi, si}Ni=1.

(ii) {θi, si, {uit}∞t=−∞}Ni=1 is i.i.d. over i conditional on {Xt , Zt}∞t=−∞.

17A proof and additional details are available upon request. As a practical example, we think of the responses of micro out-
comes to monetary and fiscal policies during the COVID-19 pandemic.
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Assumption 3.2 (Shocks and mean independence).

(i) E
[
Xt

���{Xτ}τ≠t , {Zτ , {uiτ}Ni=1
}∞
τ=−∞ , {θi, si}Ni=1

]
= 0.

(ii) E
[
Zt

���{Zτ}τ≠t , {Xτ , {uiτ}Ni=1
}∞
τ=−∞ , {θi, si}Ni=1

]
= 0.

(iii) E
[
uit

��{uiτ}τ≠t , {Xτ , Zτ}∞τ=−∞ , θi, si
]
= 0.

Assumptions 3.1 and 3.2 generalize 3.S3 and 3.S4 to accommodate the presence of both unobserved het-
erogeneity and external covariates. Assumption 3.2 requires them to be strictly exogenous with respect to
shocks. Importantly, the joint distribution of (θi, si) is left unrestricted, and so is that of {θi, si}Ni=1 condi-
tional on {Xt}∞t=−∞, as in pure fixed effects approaches. For a discussion of all other components, we refer the
reader to Section 3.2. Again, the crucial assumption is 3.2(i) on the availability of an observed macro shock
satisfying certain orthogonality conditions. We consider alternatives to it in the form of mismeasurement
with an instrument in Section 3.3.4.

Estimator and inference procedure

We now introduce the panel LP estimator and inference procedure. We denote by Wit ∈ Rd the vector
of controls (d may change with the sample size). If Wit contains no time fixed effects, let ŝi = si — this
accommodates the case si = 1. Otherwise, let ŝi = si − N−1 ∑N

j=1 sj and note that if time fixed effects are
included, local projections on siXt and ŝiXt produce numerically the same estimate β̂(h) below. In addition
to unit and possibly time dummies, we consider below cases in which Wit contains lags of siXt or Yit and
we assume that Wit is observed for t = 1, . . . , T .18

The fitted equation for the panel LP estimator β̂(h) is

Yi,t+h = β̂(h) ŝiXt + η̂(h)′Wit + ξ̂it (h),

where the residual ξ̂it (h) is orthogonal to ŝiXt and Wit. To characterize β̂(h) we use Frisch–Waugh–Lovell.
Consider the auxiliary regression of ŝiXt on Wit,

ŝiXt = π̂(h)′Wit + x̂it (h), (3.8)

where the residual x̂it (h) is orthogonal to Wit. Then, an explicit formula for β̂(h) is

β̂(h) =
∑T−h
t=1

∑N
i=1 x̂it (h)Yi,t+h∑T−h

t=1
∑N
i=1 x̂it (h)2 . (3.9)

The time-clustered heteroskedasticity-robust standard error is

σ̂ (h) =

√︄
V̂ (h)

(T − h) Ĵ (h)2 , (3.10)

18Since Yit ,Xt and si could be multivariate, this is without loss of generality. For example, a panel LP of Yit on siXt controlling
for Xt and lags of Yit and another micro control Ỹit is covered by redefining Yit to (Yit , Ỹit) and si to (1, si). Also, note that if Wit

includes lags of shocks or outcomes we assume we observe siXt or Yit for t < 1.
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with

Ĵ (h) = 1
N (T − h)

T−h∑︁
t=1

N∑︁
i=1

x̂it (h)2, V̂ (h) = 1
(T − h)

T−h∑︁
t=1

(
1
N

N∑︁
i=1

x̂it (h)ξ̂it (h)
)2

. (3.11)

Finally, the (1 − α) confidence interval is

Ĉα(h) =
[
β̂(h) ± z1−α/2σ̂ (h)

]
, (3.12)

where zq is the q-quantile of the standard normal distribution.

Additional assumptions

To establish our uniform asymptotic approximations, we need the following:

Assumption 3.3 (Regularity conditions).

(i) There is a positive finite constant M8 such that, almost surely,

E
[
X8
t

���{θi, si}Ni=1
]
≤ M8, E

[
Z8
t

���{θi, si}Ni=1
]
≤ M8, E

[
u8
it

��θi, si] ≤ M8.

(ii) There is a positive finite constant M such that, almost surely,

E
[
X2
t

���{Xτ}τ≠t , {θi, si}Ni=1
]
≥ M, E

[
Z2
t

���{Xτ}, {θi, si}Ni=1
]
≥ M, E

[
u2
it

��{Xτ}, θi, si] ≥ M.

(iii) The conditional cumulants up to fourth-order of vec
{
(Xt , Zt , uit) (Xt , Zt , uit)′

}
given {θi, si}Ni=1 are al-

most surely absolutely summable.

(iv) There are positive finite constants Cℓ such that C =
∑∞
ℓ=0 Cℓ < ∞ and, almost surely,

|βiℓ | ≤ Cℓ , |γiℓ | ≤ Cℓ , |δiℓ | ≤ Cℓ , |si | < C.

(v) There is a positive finite constant C such that, almost surely,

∞∑︁
ℓ=0

(
N−1

N∑︁
i=1

ŝiβiℓ

)2

≥ C,
∞∑︁
ℓ=0

(
N−1

N∑︁
i=1

ŝiγiℓ

)2

≥ C, N−1
∞∑︁
ℓ=0

N∑︁
i=1

ŝ2i δ
2
iℓ ≥ C.

Our model interprets θi as unit-specific parameters and {Xt , Zt , uit} as sources of uncertainty. This calls
for making time series assumptions on the uncertainty given parameters (parts (i), (ii) and (iii)) while requir-
ing that parameters ensure sufficient regularity for all units in the cross-sectional population (parts (iv) and
(v)).

Parts (i), (ii) and (iii) are standard in the time series context (see, for instance, Assumption 2 in Mon-
tiel Olea and Plagborg-Møller (2021)). They put limits on the tails of the distributions of shocks, as well as
the predictability and dependence of their second moments. Part (iv), on the other hand, guarantees that
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infinite moving averages, such as
∑∞
ℓ=0 βiℓXt−ℓ , are well defined for all units. Absolute summability rules out

unit roots but still allows for rich persistence patterns — such as those from stationary ARMA and other
short-memory processes.19

Lastly, part (v) requires non-zero variability given {θi, si}Ni=1 ofN−1 ∑N
i=1 ŝi

∑∞
ℓ=0 βiℓXt−ℓ ,N

−1 ∑N
i=1 ŝi

∑∞
ℓ=0 γiℓZt−ℓ

andN−1/2 ∑N
i=1 ŝi

∑∞
ℓ=0 δiℓui,t−ℓ . It is mostly a technical condition to prevent trivial cases in which the regres-

sion score has zero variance. Nevertheless, it is compatible with, say, a non-negligible fraction of units having
zero exposure to macro or micro shocks. It also places no restriction on the relative importance of macro ver-
sus micro shocks which is governed by κ.

3.3.2 Main result

The main contribution of the chapter is to characterize the large-sample properties of β̂(h), σ̂ (h) and Ĉα(h).
In the asymptotic plan, we take T,N → ∞ and we are interested in uniform approximations with respect
to κ. The key result is Proposition 3.1 which states that Ĉα(h) delivers uniformly valid inference for the
coefficient in a regression of βih on ŝi if enough lags of ŝiXt are used as controls.

We describe first the estimand and then the uniform inference result. We use Pκ to indicate probabilities
under a DGP associated to a given value of κ and we omit the subindex from objects whose probabilities (or
expectations) do not depend on κ (such as those in Assumptions 3.2 and 3.3).

Estimand. If si is not a constant and time fixed effects are included, the population object targeted by the
panel LP is

β(h) =
Cov

(
si, βih

)
Var

(
si
) . (3.13)

In other words, panel LPs estimate the slope in a population linear projection of βih on characteristics si
including an intercept. Similarly, if si = 1, the estimand becomes the mean impulse response β(h) = E

[
βih

]
.

Note that omitting eitherXt or time dummies as controls in a panel LP has the effect of forcing the regression
of βih on si through the origin, leading to the estimand β(h) = (E

[
s2i
]
)−1E

[
siβih

]
. In order to obtain a rich

summary of the heterogeneity in βih, therefore, the researcher will typically need to explore different choices
of si or allow si to be a vector.20

Under the conditions of Proposition 3.1, β̂(h) = β(h) + oPκ (1) for any DGP sequence Pκ such that
κ/
√
TN = o(1): that is, if the panel LP estimator converges, it is to β(h).
This clarifies the sense in which panel LPs can be interpreted when the underlying population of interest

features unrestricted heterogeneity in responses to shocks, as in (3.6). Precisely because we place virtually no
restriction on the joint distribution of (θi, si), the characterization of the estimand is of a nonparametric
nature.

19We conjecture, however, that many of our results remain valid at moderate horizons in the presence of near unit roots and
our simulation evidence supports this claim. See Section 3.3.3 for further discussion.

20For example, the best linear approximation E∗ [
βih

��si] = E
[
βih

]
+ (Cov

(
si , βih

)
/Var

(
si
)
)
(
si − E

[
si
] )

requires both esti-
mands or, alternatively, the interaction of Xt with (1, si) rather than si alone (omitting time effects). If si is multivariate, a con-
fidence region constructed on the basis of a time-clustered heteroskedasticity-robust variance estimate enjoys the same uniform
validity property of Proposition 3.1. We illustrate this in our empirical calculations in Section 3.5.
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Uniformly valid inference. Let p be the number of lags of ŝiXt included in the controlsWit. Both p and
h are fixed as T,N → ∞ while T/N → 0.21 Our main result is that Ĉα(h) has correct coverage for β(h)
uniformly over κ so long as h ≤ p:

Proposition 3.1. Under Assumptions 3.1, 3.2 and 3.3, for h ≤ p,

lim
T,N→∞

sup
κ

���Pκ (
β(h) ∈ Ĉα(h)

)
− (1 − α)

��� = 0. (3.14)

Proof. See Section A.1. □

Proposition 3.1 states that valid inference results from clustering standard errors at the time level, which
accounts for cross-sectional dependence induced by omitted aggregate shocks, and from ex-ante including
lags of ŝiXt as controls, which renders the regression scores uncorrelated. We refer to this strategy as time-
clustered lag-augmented heteroskedasticity-robust (t-LAHR) inference. As in Section 3.2 and as explained
below, it is closely linked to inference in time series LPs.

Despite the general error dynamics in (3.6)–(3.7), the regression score
∑N
i=1 Xt ŝiξit (h, κ), with ξit (h, κ)

the population counterpart to ξ̂it (h) defined in (3.19), has limited serial correlation. It is an MA(h) process
with the first p autocovariances set to zero. Thus, it becomes uncorrelated when p ≥ h which is why t-
LAHR works. Besides, when p < h, the autocovariances stem only from leftover leads of Xt and not from
the unobserved macro errorZt or micro error uit. In fact, they will tend to be small compared to the variance
of the score in low-signal (large κ) DGPs or if βiℓ decays quickly. We therefore expect t-LAHR inference to
have small coverage distortions even for p < h; we provide affirmative evidence via simulations in Section
3.4.

A striking implication of Proposition 3.1 is that t-LAHR inference remains valid even in the low-signal
setting κ/

√
N → ∞ where there is scarcity of information about aggregate shocks in the sample and β̂(h) is

inconsistent. The uniformity over DGPs with different macro-micro signal-noise obviates the need to take
a stand on the κ-regime, which is important because κ is not always consistently estimable.

In contrast, inference based on unit-level clustering of the regression score is not uniformly valid as it
tends to severely undercover β(h) in high- and moderate-signal regimes. Similarly to Section 3.2, provided
lags of ŝiXt are included, unit-level clustering is asymptotically equivalent to not clustering at all, whereas
two-way clustering is equivalent to time-level clustering. That is, unit-level clustering is neither necessary
nor sufficient for valid inference — yet another implication of Xt being a shock that has no counterpart in a
more generic time series setup.

Remark 3.3 (Proof steps). To establish (3.14), we decompose the problem into showing (A) asymptotic
normality of the score, (B) consistency of the standard error, and (C) negligibility of some remainder terms.
We obtain uniformity via the drifting parameter sequence approach (see Andrews, Cheng, and Guggen-
berger (2020)).

In (A), although the regression score is serially uncorrelated, it contains leads and lags of macro and
micro errors. This makes the reverse martingale technique of Montiel Olea and Plagborg-Møller (2021)

21We regardT/N → 0 as a mild requirement for the empirical applications of reference. It follows from the proof of Proposi-
tion 3.1 that ifT/N is not asymptotically negligible (as if takingN as fixed), (3.14) holds with β(h) replaced by the finite-population

estimand β̃(h) = (∑N
i=1 ŝ

2
i )−1 ∑N

i=1 ŝiβih.
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inapplicable. Instead, using a similar insight to that of Xu (2023), we produce a martingale approximation
by rearranging the score so that the leads at time t become the lags at a time in the future of t. See Lemma
B.1 in Appendix B.1 for the details.

In (B) and (C), we rely on direct calculation of uniform bounds. The presence of heterogeneity poses
a challenge with no parallel in the time series case. Because of Assumption 3.3, we can derive many of the
bounds by first conditioning on {θi, si}Ni=1, exploiting the connection between conditional and uncondi-
tional convergence.

Remark 3.4 (Synthetic time series). A useful device to interpret panel LPs is the following representation.
The residual x̂it (h) in (3.8) can be written as x̂it (h) = ŝiX̂t (h), where X̂t (h) is the residual from regressingXt
on Xt−1, . . . , Xt−p and an intercept (on T − h observations).22

Then, the panel LP estimator in (3.9) can be written as

β̂(h) =
∑T−h
t=1

∑N
i=1 ŝiX̂t (h)Yi,t+h∑T−h

t=1
∑N
i=1 ŝiX̂t (h)2 =

∑T−h
t=1 X̂t (h)Ŷt+h∑T−h
t=1 X̂t (h)2 ,

i.e., the time series LP estimator that regresses cross-sectional regression coefficients Ŷt+h = (∑N
i=1 ŝ

2
i )−1 ∑N

i=1 ŝiYi,t+h
on Xt controlling for Xt−1, . . . , Xt−p and an intercept. The standard error σ̂ (h) in (3.10) is also the Eicker–
Huber–White standard error calculated on the time series LP residuals ξ̂t (h) = (∑N

i=1 ŝ
2
i )−1 ∑N

i=1 ŝi ξ̂it (h).
Hence, t-LAHR inference for panel LPs and lag-augmented heteroskedasticity-robust inference for time
series LPs are intimately related.

Remark 3.5 (si and precision). This representation is also useful to illuminate the fact that estimation
error is of order T−1/2 in environments with κ ∝

√
N , despite what otherwise looks like a standard panel

regression with potentially very rich micro data. We can give interpretable conditions under which variation
in si affords faster convergence rates. These are akin to si being a cross-sectional instrument: we require si
to correlate with βih — that is, be relevant for heterogeneity in transmission of Xt at horizon h — but to
be orthogonal to all other exposures to aggregate shocks, ({βiℓ }ℓ≠h, γi). These conditions seem particularly
hard to meet: for each horizon h, a source of variation that is orthogonal to responses at all other horizons is
required. (Assumption 3.3(v) rules this out in our formulation.) In some sense, this reveals an intrinsic trade-
off between documenting interesting transmission mechanisms and finding valid instruments for precision.

Remark 3.6 (t-HAR). In principle, time-clustered HAR inference is a valid alternative to t-LAHR. An
analogue to Proposition 3.1 can be established for a confidence interval that replaces V̂ (h) in (3.11) with the
Hansen and Hodrick (1980) variance estimator V̂ (h) + 2

∑h
ℓ=p+1 Ṽℓ (h) where

Ṽℓ (h) =
1

(T − h)

T−h∑︁
t=ℓ+1

(
1
N

N∑︁
i=1

x̂it (h)ξ̂it (h)
) (

1
N

N∑︁
i=1

x̂i,t−ℓ (h)ξ̂i,t−ℓ (h)
)
,

This boils down to V̂ (h) for p ≥ h. Unlike V̂ (h), this alternative variance estimator is not guaranteed to

22To see this, note that x̂it (h) is ŝiXt minus a linear combination of ŝiXt−1, . . . , ŝiXt−p and unit and possibly time indicators
which is orthogonal to all of the latter. When Wit includes additional controls, the synthetic time series representation is asymp-
totically but not numerically equivalent.
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be positive semidefinite. Also, t-LAHR inference is simpler to implement and refine, remains tractable over
moderate horizons under VAR DGPs (Section 3.3.3), and performs better in small samples (Section 3.4).

Remark 3.7 (State-dependence). In some applications, interest is in the differential pass-through of shocks
to responses along an observable (time-varying) state, denoted now sit. Formalizing this requires extending
(3.6)–(3.7) to allow for time-varying impulse responses:

Yit = μi +
∞∑︁
ℓ=0

βitℓXt−ℓ + vit , vit =
∞∑︁
ℓ=0

γitℓZt−ℓ + κ
∞∑︁
ℓ=0

δitℓui,t−ℓ .

Letting ŝit = sit − N−1 ∑N
j=1 sjt, the corresponding panel LP estimator on ŝitXt retains its interpretation as

the slope coefficient of the linear projection E∗ [
βith

��sit] as long as sit and impulse responses are exogenous
with respect to Xt. Although a more detailed exploration is beyond the scope of our chapter, the treatment
of sit is analogous to that of si, and all the results above carry over with little modification. We revisit this in
simulations in Section 3.4 and in our empirical illustration in Section 3.5.23

3.3.3 Panel VAR model

It is not uncommon in applications that the researcher is interested in responses at an horizon h which is a
non-negligible fraction of T . Proposition 3.1 guarantees exact coverage for short horizons depending on the
number of lags of the outcome and shock used as controls. There is, however, one important class of DGPs
for which our uniformity result extends to h ∝ T : the VAR class.

We now assume a panel VAR(p) model (with p < ∞):

Yit = mi +
p∑︁
ℓ=1

AℓYi,t−ℓ +
p∑︁
ℓ=0

BiℓXt−ℓ + Ci0Zt + κDi0uit . (3.15)

If
∑p

ℓ=1 Aℓ < 1, as implied by Assumption 3.3(iv), we can recover the unit-specific parametersμi, {βiℓ }, {γiℓ }, {δiℓ }
from mi, {Aℓ }, {Biℓ }, Ci0, Di0 by inverting the lag polynomial A(L) = 1 − ∑p

ℓ=1 AℓL
ℓ . That is, VAR model

(3.15) is a special case of (3.6)–(3.7).
Assuming that p is known and that Wit contains p lags of Yit and siXt, the t-LAHR confidence interval

Ĉα(h) defined in (3.12) has uniform validity even for moderately long horizons h exceeding p:

Proposition 3.2. Under Assumptions 3.1, 3.2 and 3.3, for some positive constant ϕ < 1,

lim
T,N→∞

sup
0≤h≤ϕT

sup
κ

���Pκ (
β(h) ∈ Ĉα(h)

)
− (1 − α)

��� = 0. (3.16)

Proof. See Section A.1. □

The intuition and proof for Proposition 3.2 mirror that of Proposition 3.1. Under VAR model (3.15) the
regression score

∑N
i=1 Xt ŝiξit (h, κ), with ξit (h, κ) now defined in (3.20), is serially uncorrelated not just for

23Rambachan and Shephard (2021, Section 3.4) offer a nonparametric characterization of local projection estimands when
states are endogenous in a time-series potential outcomes framework; see also Gonçalves, Herrera, Kilian, and Pesavento (forth-
coming) for the case where st = 1

{
Xt > c

}
.
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h ≤ p but for any h. The basic consequence is that if a low-order VAR model is a reasonable approximation,
the t-LAHR inference approach that relies on controlling for a small number of lags of the outcome and
shock is robust over long horizons and regardless of the amount of micro noise.24

Remark 3.8 (LP inference when the shock is not observable). Proposition 3.2 can be read as the panel
data counterpart to the result in Montiel Olea and Plagborg-Møller (2021) under stationarity when the
shock is directly observable. That parallel implies that if Xt is unavailable but instead we observe X∗

t =∑p−1
ℓ=1 αℓX

∗
t−ℓ + Xt and we run a local projection of Yi,t+h on siX

∗
t including p lags of Yit and siX

∗
t in the con-

trol vector Wit, t-LAHR inference is uniformly valid over h and κ.25

Remark 3.9 (Heterogeneity in VAR coefficients). Model (3.15) assumes homogeneous coefficients {Aℓ }.
This is common in the microeconometric literature on panel VARs (Arellano, 2003, Chapter 6) but it is not
necessary for (3.16). For example, we can establish Proposition 3.2 in a moderate heterogeneity environment
that replaces Aℓ with Aiℓ where sup1≤i≤N |Aiℓ − Aℓ | = Op

(
T−1/2

)
. Proposition 3.2 can also be established

(under slightly different regularity conditions) if we allow for heterogeneity in {Aℓ } but we include p unit-

specific lags of Yit as controls in Wit.

3.3.4 Panel LP-IV and proxy shocks

The most common implementation of panel LPs in empirical work treats the shock of interest as observed.
Nevertheless, it is sometimes more realistic to assume there is measurement error in the shock elicitation pro-
cess. This creates an endogeneity problem that can be dealt with by using the shock measures as instruments
for the actual underlying shock (Ramey, 2016; Stock and Watson, 2018).

The researcher observes the outcome Yit and characteristics si, but instead of the actual shock Xt she
observes an endogenous aggregate state variable X̃t and a proxy shock X∗

t . In addition to (3.6)–(3.7), we
assume

X̃t =
∞∑︁
ℓ=0

bℓXt−ℓ +
∞∑︁
ℓ=0

cℓZt−ℓ , (3.17)

X∗
t = a0Xt + νt , (3.18)

where νt is measurement error. We normalize b0 = 1 to fix the scale of the estimand as only relative impulse
responses are identified.26 We also adopt the following:

Assumption 3.4 (LP-IV).

24The results in Montiel Olea et al. (2024) suggest that for a fixed horizon h, t-LAHR inference would also remain valid if the
VAR model (3.15) were contaminated by moving averages of Zt and uit in a T −1/4-neighborhood of zero — that is, if the VAR
model holds only approximately. The simulation evidence in Section 3.4 based on DGPs which are not VARs is consistent with
this idea.

25Lag-augmentation means including at least one more lag than the autoregressive order ofX∗
t which is p− 1. The connection

with Montiel Olea and Plagborg-Møller (2021) also suggests that Ĉα (h) is uniformly valid over the VAR parameter space (including
unit roots) if a certain condition on uniform non-singularity of the least squares denominator matrix (Assumption 3 in their paper)
holds.

26It is straightforward to include intercepts in both (3.17) and (3.18). Additionally, as in Section 3.3.3, we can derive uniformity
results with respect to the horizon h by assuming a VAR model in (3.6), (3.7) and (3.17).



54 Chapter 3

(i) a0 ≠ 0.

(ii) Assumptions 3.1, 3.2 and 3.3 hold with Zt replaced by (Zt , νt).

(iii) For the same constants Cℓ and C of Assumption 3.3,

|bℓ | ≤ Cℓ , |cℓ | ≤ Cℓ ,
∞∑︁
ℓ=0

b2
ℓ ≥ C,

∞∑︁
ℓ=0

c2
ℓ ≥ C.

Assumption 3.4(i) is needed for instrument relevance, and we restrict our attention to the strong instru-
ment case where we keep a0 fixed as N,T → ∞. On the other hand, Assumption 3.4(ii) implies that νt is
orthogonal to {Xτ , Zτ}. This embodies the key lead-lag exogeneity condition requiring X∗

t to be contem-
poraneously correlated only with Xt, a well-known condition in the time series LP-IV context.27 Finally,
Assumption 3.4(iii) imposes regularity on the endogenous variable X̃t.

LP-IV estimation and inference. LP-IV regresses Yi,t+h on X̃t = (X̃t , X̃t−1, . . . , X̃t−p)′ using X∗
t =

(X∗
t , X

∗
t−1, . . . , X

∗
t−p)′ as instruments (both interacted with si), controlling for unit and time effects (Wit de-

notes controls). The residualized instrument is

x̂it (h) = ŝiX
∗
t − π̂(h)′Wit = ŝiX̂

∗
t (h),

where X̂∗
t (h) = X∗

t − (T − h)−1 ∑T−h
t=1 X∗

t . The panel LP-IV estimator β̂IV(h) is then

β̂IV(h) =
(
T−h∑︁
t=1

N∑︁
i=1

x̂it (h) ŝiX̃′
t

)−1 T−h∑︁
t=1

N∑︁
i=1

x̂it (h)Yi,t+h =
(
T−h∑︁
t=1

X̂∗
t (h)X̃′

t

)−1 T−h∑︁
t=1

X̂∗
t (h)Ŷi,t+h,

where Ŷi,t+h is the synthetic outcome defined in Remark 3.4. Put another way, panel LP-IV admits a synthetic
time series LP-IV representation.

The only entry of β̂IV(h) that has interpretation as an estimate of a relative impulse response is β̂IV
0 (h) =

e′1β̂
IV(h) where e1 is the first column of Ip+1. The remaining entries are necessary for t-LAHR inference to

be valid. Given residuals
ξ̂ IV
it (h) = Yi,t+h − ŝiX̃

′
t β̂

IV(h) − η̂IV(h)′Wit ,

we define

Ĵ IV(h) = 1
N (T − h)

T−h∑︁
t=1

N∑︁
i=1

x̂it (h) ŝiX̃′
t , V̂ IV(h) = 1

(T − h)

T−h∑︁
t=1

(
1
N

N∑︁
i=1

x̂it (h)ξ̂ IV
it (h)

)2

.

The time-clustered heteroskedasticity-robust standard error for β̂IV
0 (h) is

σ̂ IV
0 (h) =

[
1

(T − h) ·
(
e′1Ĵ

IV(h)−1
)
V̂ IV(h)

(
e′1Ĵ

IV(h)−1
)′] 1/2

27See, for instance, Stock and Watson (2018, p. 924) and Plagborg-Møller and Wolf (2021, p. 970). The setup can be extended
to allow νt to be serially correlated and to the case where X∗

t is valid only after conditioning on a set of controls.
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and the (1 − α) confidence interval, Ĉ IV
α (h) =

[
β̂IV

0 (h) ± z1−α/2σ̂
IV
0 (h)

]
. Then:

Proposition 3.3. Under Assumption 3.4, for h ≤ p,

lim
T,N→∞

sup
κ

���Pκ (
β(h) ∈ ĈIV

α (h)
)
− (1 − α)

��� = 0.

Proof. See Section A.1. □

Remark 3.10 (Absence of first-stage heterogeneity). The LP-IV estimand coincides (under the normal-
ization b0 = 1) with the LP estimand (3.13) despite the presence of heterogeneity. This is far from obvious:
under treatment effect heterogeneity, IV estimands are generally (weighted averages of) local average treat-
ment effects (Angrist and Imbens, 1995; Angrist, Imbens, and Graddy, 2000). It is the aggregate-only nature
of the first-stage model that underlies this result. This is yet another illustration of the unique setting that
we study in this chapter.

3.4 Simulation study

We ran a comprehensive simulation study to verify the finite-sample robustness of the inference procedures
analyzed in Section 3.3. Here we provide a summary and defer additional detail and results to Appendix B.2.

Designs. Our study relies on two different DGPs. The first is the general setup (3.6)–(3.7) supplemented
with (3.17)–(3.18) to cover the endogenous case. We begin by simulating shocks {Xt , Zt , νt , {uit}Ni=1} as mu-
tually and serially independent N (0, 1) random variables, and by drawing {θi, si}Ni=1 independently across
units. To ensure correlation between observed and unobserved heterogeneity we use a technique described
in Appendix B.2. We calibrate the distribution of {βiℓ , γiℓ , δiℓ } and the value of {bℓ , cℓ } to produce realistic
degrees of shock persistence.

Given these elements, we generate the inputs for panel LP and LP-IV procedures, namely Yit, Xt, si,
X̃t, X

∗
t . We also simulate the time-varying covariate sit = si + ζit (where ζit is such that sit remains strictly

exogenous) to compare panel LPs on siXt and sitXt — this illustrates the point we made in Remark 3.7.
The second DGP is the VAR model (3.15). Again we generate shocks as i.i.d. N (0, 1) and we simulate the

heterogeneity as detailed in Appendix B.2. When calibrating the VAR parameters {Aℓ } we allow the largest
AR root to be 1 − c/T (we use c = 5) to capture the essence of a near non-stationary environment.28

The results below are based on nMC = 5, 000 Monte Carlo samples. Motivated by our survey of the
empirical literature, we look at designs with T = 30 and T = 100. We set N = 1, 000 (although we also
considered experiments with larger N ) and we let κ take values consistent with R̄2(κ) ∈ {0.99, 0.66, 0.33}
as defined in (3.4). As a reference, R̄2(κ) = 0.66 corresponds to the one-third of aggregate fluctuations
explained by micro shocks suggested by Gabaix (2011) for GDP growth, which we take as moderate signal-
to-noise.

28We also considered experiments where (a) in the first DGP shocks are conditionally heteroskedastic, and (b) in the VAR
DGP we have unit-specific VAR parameters {Aiℓ }. We did not find any major difference with what we report here.
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Inference procedures. We compare t-LAHR inference with one-way (1W), two-way (2W), and Driscoll-
Kraay (DK98) inferences. These are implemented without lag augmentation, as is common practice. For
illustrative purposes, we also include t-HR (the non-lag-augmented counterpart to t-LAHR) and t-HAR
alternatives.

For t-LAHR inference we use the simple lag selection rule p = min{h, (T − h)1/3} (except in the VAR
DGP where p is known) and we apply the finite-sample refinement advocated by Imbens and Kolesár (2016).
The lag selection rule is motivated by Xu (2023, Section 3.3) for fixed h and provides fairly generous lag
augmentation. For t-HAR inference we use the equally-weighted cosine approach (Müller, 2004) with the
choice of tuning parameter recommended in Lazarus et al. (2018).

Results. In Figure 3.1, we report pointwise coverage rates for horizons 0 ≤ h ≤ 0.25T with T = 100.
These correspond to 90% confidence intervals for panel LP and LP-IV using si to interact the aggregate
shock. Panels (a)-to-(c) display LP while (d)-to-(f) display LP-IV in the general DGP; panels (g)-to-(i) display
LP in the VAR DGP.

Figure 3.1 suggests four takeaways. First, t-LAHR performs best in all scenarios, with coverage close
to the nominal rate even in low-signal cases and for horizons h well beyond p. Its mean absolute coverage
distortion never exceeds 2%, whereas it is between 4% and 7% for the second best option (t-HAR) under
high signal.

Second, estimating the long-run variance of the score (instead of lag augmenting) can be challenging with
smallT . This is particularly true for DK98 which relies on Newey–West. Interestingly, these approaches do
better in low-signal DGPs where, as mentioned before, there is less to gain from doing HAC.

Third, one-way clustering is very sensitive to R̄2(κ), suffering severe distortions in intermediate- and
high-R̄2(κ) cases. What is more, it is outperformed by t-LAHR even if micro shocks explain the majority of
aggregate variation. This is consistent with the view that 1W guards against the wrong type of correlation in
the score.

Finally, two-way clustering is usually close to t-HR, its non-i-clustered version; another indication that
there is no clear advantage in clustering by units. In fact, in certain occasions (mainly low-signal and near
non-stationary designs), 2W gives worse inferences than t-HR or 1W alone. This is possibly due to the non-
standard behavior of variance estimators when there are micro (near) unit roots.

Identical takeaways emerge in experiments where we substitute si with either 1 or sit (Appendix B.2), and
with a sample size T = 30 (Figure 3.2).

In sum, the small-sample evidence reinforces many of our theoretical results. It shows that the large-
sample approximations of Section 3.3 provide reliable guidance for understanding estimation and inference
with aggregate shocks. Furthermore, it illustrates the practical relevance of achieving uniformity with respect
to κ, and it delivers a clear methodological prescription: t-LAHR inference.
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(a) LP. R̄2 (κ) = 0.99

0 5 10 15 20
h

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ov

er
ag

e 
ra

te
 o

f 9
0%

 C
I

1W
2W
DK98

t-HR
t-LAHR
t-HAR

(b) LP. R̄2 (κ) = 0.66
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(c) LP. R̄2 (κ) = 0.33
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(d) LP-IV. R̄2 (κ) = 0.99
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(e) LP-IV. R̄2 (κ) = 0.66
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(f) LP-IV. R̄2 (κ) = 0.33
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(g) VAR DGP. R̄2 (κ) = 0.99
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(h) VAR DGP. R̄2 (κ) = 0.66
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(i) VAR DGP. R̄2 (κ) = 0.33
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FIGURE 3.1. Coverage rates of 90% confidence intervals for T = 100.
Note: 1W refers to one-way (unit-level) clustering, 2W to two-way clustering, DK98 to Driscoll–Kraay, and t-HR/t-LAHR/t-
HAR to the time-level clustering approaches discussed in the text.
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(a) LP. R̄2 (κ) = 0.99
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(b) LP. R̄2 (κ) = 0.66
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(c) LP. R̄2 (κ) = 0.33
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(d) LP-IV. R̄2 (κ) = 0.99
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(e) LP-IV. R̄2 (κ) = 0.66
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(f) LP-IV. R̄2 (κ) = 0.33
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(g) VAR DGP. R̄2 (κ) = 0.99
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(h) VAR DGP. R̄2 (κ) = 0.66
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(i) VAR DGP. R̄2 (κ) = 0.33
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FIGURE 3.2. Coverage rates of 90% confidence intervals for T = 30.
Note: 1W refers to one-way (unit-level) clustering, 2W to two-way clustering, DK98 to Driscoll–Kraay, and t-HR/t-LAHR/t-
HAR to the time-level clustering approaches discussed in the text.
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3.5 Empirical illustration

We now discuss an empirical exercise that demonstrates the applicability of our methods in a setup featuring
time-varying sit and unbalanced panels, and compares our practical recommendation to popular alternatives.
The exercise is motivated by the burgeoning literature on the role played by firm heterogeneity and financial
frictions in the propagation of monetary policy.

Data and background. Quantifying firm-level responses to exogenous changes in policy is a key empirical
goal as it is informative on the mechanisms through which monetary policy operates. For instance, Crouzet
and Mehrotra (2020) focus on the role of firm size for investment response heterogeneity, finding larger (al-
beit noisy) responses for smaller firms; Ottonello and Winberry (2020) instead focus on default risk, finding
larger responses for less risky companies.

For our empirical analysis, we construct a dataset similar to the latter based on Compustat and high-
frequency identified monetary policy shocks (Gürkaynak, Sack, and Swanson, 2005; Gorodnichenko and
Weber, 2016). This results in an unbalanced panel for the period 1990Q1–2010Q4 with observations on
firm-level investment, size, and leverage.29 In total, there are T = 80 quarters and N = 4, 187 individual
companies which, net of missing data, amount to 235,233 observations.

We consider regressions of cumulative investment changesYi,t+h = log(ki,t+h/ki,t−1) (kit being the capital
stock) on policy shocksXt interacted with sit, a vector containing size, leverage, and their product. From Sec-
tion 3.3, we know that under unrestricted heterogeneity the population counterpart is the linear projection
of firm-level impulse responses on sit. Thus, including size and leverage together (as well as their interaction)
in sit is a way to enrich the linear approximation.

Synthetic time series representation. A fundamental insight of this chapter is that the synthetic time
series form of the microdata is a sufficient statistic for the panel LP; a low dimensional representation of a
highly complex, unbalanced dataset.30

Figure 3.3 displays it for the three components of sit. It is clear that movements in synthetic outcomes
concurrent with surprise cuts in policy rates, mostly around recessions, are the main source of identification.
There is also substantial variation in synthetic outcomes unrelated toXt, indicating the presence of omitted
aggregate or non-negligible idiosyncratic shocks — the central premises of this chapter.

29We use the paper’s replication code to build the data and we verify that we can replicate the original results, with minor
numerical differences that can be attributed to revisions in input data. Firm size is measured by the value of total assets held by a
company while leverage is its debt-to-assets ratio. We have also tried the distance-to-default measure in Ottonello and Winberry
(2020) with qualitatively similar results.

30Remark 3.4 generalizes as follows. Let dit = 0 indicate a missing observation with dit = 1 otherwise. Abstracting from
controls, the panel local projection estimator with a time-varying sit is

β̂(h) =
∑T−h
t=1

∑N
i=1 ditsitXtYi,t+h∑T−h

t=1
∑N
i=1 dits

2
itX

2
t

=

∑T−h
t=1 ωtXtŶt+h∑T−h
t=1 ωtX

2
t

,

where ωt =
∑N
i=1 dits

2
it and Ŷt+h = (∑N

i=1 s
2
it)−1 ∑N

i=1 sitYi,t+h. This is a weighted least squares regression of slope coefficients Ŷt+h
on Xt . Note that if sit = 1 the weights boil down to the number of non-missing observations ωt =

∑N
i=1 dit , as intuition suggests.

Our theory applies with data missing at random.
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FIGURE 3.3. Synthetic time series representations.
Note: Grey areas are NBER-dated recessions. s1 is size, s2 is leverage and s3 is the interaction. Xt and Ŷt are standardized to zero
mean and unit variance; Xt > 0 indicates a surprise cut in the Fed Funds rate.

Estimation and inference method comparison. Figure 3.4 reports point estimates and 90% confidence
intervals for the coefficient on each entry of sitXt at different horizons.31 According to the t-LAHR intervals,
the evidence favors the hypothesis that larger and less indebted firms respond less to monetary policy shocks,
with the size effect more persistent and not much interaction between the two.
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(c) size × leverage
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FIGURE 3.4. Point estimates and 90% confidence intervals.
Note: The procedures are one-way unit-level clustering (1W, dotted line), two-way clustering (2W, dashed line), Driscoll-Kraay
(DK98, dash dotted line), and t-LAHR (solid line).

From an applied point of view, the main message is that popular methods can deviate significantly from
the (asymptotically robust) t-LAHR method. For example, one-way clustering produces intervals that are

31The panel local projections include as controls unit and time effects, lagged firm-level sales growth, and both lagged GDP
growth and lagged unemployment interacted with sit . For t-LAHR inference we include p lags of Yit and sitXt . We limit
p = min{h, 2} to discipline the number of regressors in view of the dimension of sit . One-way, two-way and Driscoll-Kraay
are implemented without lag-augmentation.
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too short (panel (a)) and too wide (panel (c)).32 Two-way clustering is close to t-LAHR but produces differ-
ent conclusions in panel (b) and may be unreliable in high-persistence, low-signal setups. Finally, Driscoll-
Kraay intervals can be misleading with T = 80. In fact, they lead to exactly the opposite conclusions about
the role of size and leverage.

3.6 Proofs

Proposition 3.1

Let β̃(h) =

(∑N
i=1 ŝ

2
i

)−1 ∑N
i=1 ŝiβih be the coefficient in the (infeasible) regression of βih on ŝi — the finite-

population counterpart to β(h). Also, define

ξit (h, κ) =
∞∑︁
ℓ=0

(
ιℓ (h)βiℓXt+h−ℓ + γiℓZt+h−ℓ + κδiℓui,t+h−ℓ

)
, (3.19)

ξt (h, κ) =
1
N

N∑︁
i=1

ŝiξit (h, κ) =
∞∑︁
ℓ=0

(
ιℓ (h)β̄ℓXt+h−ℓ + γ̄ℓZt+h−ℓ +

κ

N

N∑︁
i=1

ŝiδiℓui,t+h−ℓ

)
where ιℓ (h) = 1 − 1

{
h ≤ ℓ ≤ h + p

}
, β̄ℓ = N−1 ∑N

i=1 ŝiβiℓ and γ̄ℓ = N−1 ∑N
i=1 ŝiγiℓ . Finally, let V (h, κ) =

Varκ
(
Xtξt (h, κ)

���{θi, si}Ni=1

)
.

Proof of Propositions 3.1. Let
∑
i,t denote summation over 1 ≤ t ≤ T − h and 1 ≤ i ≤ N . For any ψ ∈ Rd,(∑︁

i,t

x̂it (h)2

) (
β̂(h) − β̃(h)

)
=

∑︁
i,t

x̂it (h)
(
Yi,t+h − β̃(h) ŝiXt − ψ′Wit

)
=

∑︁
i,t

ŝiXt
(
Yi,t+h − βihXt − ψ ′Wit

)
−

∑︁
i,t

(π̂(h)′Wit)
(
Yi,t+h − β̃(h) ŝiXt − ψ′Wit

)
.

The first line uses
∑
i,t x̂it (h)2

=
∑
i,t x̂it (h) ŝiXt and

∑
i,t x̂it (h)Wit = 0d×1 (to introduce ψ). The second line

uses x̂it (h) = ŝiXt − π̂(h)′Wit and
∑
i,t ŝiXt (β̃(h) ŝiXt − βihXt) = 0.

We can choose ψ so that

∑︁
i,t

ŝiXt
(
Yi,t+h − βihXt − ψ′Wit

)
=

∑︁
i,t

ŝiXtξit (h, κ) = N
T−h∑︁
t=1

Xtξt (h, κ).

Here,Wit consists of p lags of ŝiXt, unit indicators, and (possibly) time indicators (so thatd = p+N +T ).

To choose ψ , we set the coefficient on ŝiXt−ℓ to β̃(h + ℓ) =

(∑N
i=1 ŝ

2
i

)−1 ∑N
i=1 ŝiβi,h+ℓ , the coefficient on the

unit-i indicator to μi, and the coefficients on time indicators to zero. Moreover, π̂(h)′Wit = ŝi (Xt − X̂t (h))

32This can happen even in the same exercise because the estimation errors of different coefficients load differently on the macro
and micro components of the regression score. Figure 3.4 suggests the size coefficient is driven by the macro component and the
other coefficients by the micro component.
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with X̂t (h) the residual from a regression of Xt on Xt−1, . . . , Xt−p and an intercept. Then,∑︁
i,t

(π̂(h)′Wit)
(
Yi,t+h − β̃(h) ŝiXt − ψ′Wit

)
=

∑︁
i,t

(π̂(h)′Wit)ξit (h, κ).

It follows that the standardized estimation error can be written as

β̂(h) − β̃(h)
σ̂ (h) =

∑T−h
t=1

∑N
i=1 x̂it (h) (Yi,t+h − β̃(h)x̂it (h))

N

√︃
(T − h)V̂ (h)

=

√︄
V (h, κ)
V̂ (h)

×
( ∑T−h

t=1 Xtξt (h, κ)√︁
(T − h)V (h, κ)

+ RT (h, κ)
)

where the remainder term is

RT (h, κ) = −
∑T−h
t=1

∑N
i=1

(
π̂(h)′Wit

)
ξit (h, κ)

N
√︁
(T − h)V (h, κ)

.

To establish our uniform approximation we exploit drifting parameter sequences (see Andrews et al.
(2020) for formal results connecting the two). For simplicity we index everything to T , including N = NT .
We show that for any {κT }, as T → ∞,

(A)
{
(T − h)V (h, κT )

}−1/2 ∑T−h
t=1 Xtξt (h, κT )

d−−−−−−→
PκT

N (0, 1),

(B) V̂ (h)/V (h, κT )
p

−−−−−−→
PκT

1,

(C) RT (h, κT )
p

−−−−−−→
PκT

0.

Hence, for any such {κT },

β̂(h) − β̃(h)
σ̂ (h)

d−−−−−−→
PκT

N (0, 1).

We establish (A), (B) and (C) in Lemmas B.1, B.2 and B.3 in Appendix B.1. Now, Assumptions 3.1(ii) and
3.3(iv) imply β̃(h)−β(h) = OPκT

(
N−1/2

)
whereas Lemma B.2 implies min{1, κ−1

T }σ̂ (h) = OPκT

(
(T − h)−1/2

)
.

Since T/N → 0,

(β̂(h) − β(h))
σ̂ (h) =

(β̂(h) − β̃(h))
σ̂ (h) + oPκT (1)

and the result follows. □
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Proposition 3.2

Define

ξit (h, κ) =
h∑︁
ℓ=0

(
ιℓ (h)βiℓXt+h−ℓ + γiℓZt+h−ℓ + κδiℓui,t+h−ℓ

)
, (3.20)

ξt (h, κ) =
1
N

N∑︁
i=1

ŝiξit (h, κ) =
h∑︁
ℓ=0

(
ιℓ (h)β̄ℓXt+h−ℓ + γ̄ℓZt+h−ℓ +

κ

N

N∑︁
i=1

ŝiδiℓui,t+h−ℓ

)
,

and, as before, let V (h, κ) = Varκ
(
Xtξt (h, κ)

���{θi, si}Ni=1

)
. By recursive substitution,

Yi,t+h = mi (h) +
p∑︁
ℓ=1

(Aℓ (h)Yi,t−ℓ + Biℓ (h)Xt−ℓ ) + βihXt + ξit (h, κ),

for some mi (h), {Aℓ (h)}, {Biℓ (h)} that depend on the VAR parameters mi, {Aℓ }, {Biℓ }.

Proof of Proposition 3.2. We follow exactly the same steps as for Proposition 3.1. The control vector Wit in-
cludes p lags of Yit and ŝiXt in addition to unit and time effects. In the step where we choose ψ , we set the

coefficient on Yi,t−ℓ to Aℓ (h), the coefficient on ŝiXt−ℓ to B̃ℓ (h) =
(∑N

i=1 ŝ
2
i

)−1 ∑N
i=1 ŝiBiℓ (h), the coefficient

on the unit-i indicator to mi (h), and the coefficients on time indicators to zero.
The standardized estimation error can then be written as

β̂(h) − β̃(h)
σ̂ (h) =

√︄
V (h, κ)
V̂ (h)

×
( ∑T−h

t=1 Xtξt (h, κ)√︁
(T − h)V (h, κ)

+ RT (h, κ)
)

where the remainder term is now

RT (h, κ) = −
∑T−h
t=1

∑N
i=1

(
π̂(h)′Wit

) [
(βih − β̃(h) ŝi)Xt +

∑p

ℓ=1(Biℓ (h) − B̃ℓ (h) ŝi)Xt−ℓ + ξit (h, κ)
]

N
√︁
(T − h)V (h, κ)

.

Let ϕ < 1. In contrast to Proposition 3.1, instead of a single drifting parameter we now have two. We
show that for any {hT , κT } such that hT ≤ ϕT ,

(A)
{
(T − hT )V (hT , κT )

}−1/2 ∑T−hT
t=1 Xtξt (hT , κT )

d−−−−−−→
PκT

N (0, 1),

(B) V̂ (hT )/V (hT , κT )
p

−−−−−−→
PκT

1,

(C) RT (hT , κT )
p

−−−−−−→
PκT

0.

We prove (A), (B) and (C) in Lemmas B.8, B.9 and B.10 in Appendix B.1. The rest of the argument is
identical to that of Proposition 3.1. □
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Proposition 3.3

Using (3.17), substitute X̃t , X̃t−1, . . . , X̃t−p in succession into (3.6)–(3.7) to obtain

Yi,t+h = μi + βihX̃t +
p∑︁
ℓ=1

η̃iℓ X̃t−ℓ + ξit (h, κ),

ξit (h, κ) =
∞∑︁
ℓ=0

(
ιℓ (h)β̃iℓXt+h−ℓ + γ̃iℓZt+h−ℓ + κδiℓui,t+h−ℓ

)
,

for some coefficients {η̃iℓ }, {β̃iℓ }, {γ̃iℓ } that depend on {βiℓ }, {γiℓ }, {bℓ }, {cℓ } and satisfy the bound condi-

tions in Assumption 3.3 for a suitable choice of Cℓ and C. Also define β̃(h) =
(∑N

i=1 ŝ
2
i

)−1 ∑N
i=1 ŝiβih with

βih = (βih, η̃i1, . . . , η̃ip)′, ξt (h, κ) = N−1 ∑N
i=1 ŝiξit (h, κ) and V (h, κ) = Varκ

(
X∗

t ξt (h, κ)
���{θi, si}Ni=1

)
.

Proof of Proposition 3.3. Following similar steps to the derivation in Proposition 3.1, let
∑
i,t denote summa-

tion over 1 ≤ t ≤ T − h and 1 ≤ i ≤ N . For any ψ ,(∑︁
i,t

x̂it (h) ŝiX̃′
t

) (
β̂IV(h) − β̃(h)

)
=

∑︁
i,t

ŝiX
∗
t

(
Yi,t+h − X̃′

t β̃ih − ψ′Wit

)
−

(∑T−h
t=1 X∗

t

(T − h)

) ∑︁
i,t

ŝi

(
Yi,t+h − ŝiX̃

′
t β̃(h) − ψ ′Wit

)
.

Note Wit includes unit and (possibly) time effects. To choose ψ , set the coefficient on the unit-i indicator
to μi and the coefficients on time indicators to zero, so that

∑︁
i,t

ŝiX
∗
t

(
Yi,t+h − X̃′

t β̃ih − ψ′Wit

)
= N

T−h∑︁
t=1

X∗
t ξt (h, κ),(∑T−h

t=1 X∗
t

(T − h)

) ∑︁
i,t

ŝi

(
Yi,t+h − ŝiX̃

′
t β̃(h) − ψ′Wit

)
=

(∑T−h
t=1 X∗

t

(T − h)

)
T−h∑︁
t=1

ξt (h, κ).

Thus, the standardized estimation error can be written as

β̂IV
0 (h) − β̃(h)
σ̂ IV

0 (h)
=

√√√√√√ (
e′1J

−1
)
V (h, κ)

(
e′1J

−1
)′(

e′1Ĵ
IV(h)−1

)
V̂ IV(h)

(
e′1Ĵ

IV(h)−1
)′

×
©­­­­«

(
e′1Ĵ

IV(h)−1
) ∑T−h

t=1 X∗
t ξ̃t (h, κ)√︂

(T − h)
(
e′1J

−1
)
V (h, κ)

(
e′1J

−1
)′ + RT (h, κ)

ª®®®®¬
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where J = (N−1 ∑N
i=1 ŝ

2
i )E

[
X∗

t X̃
′
t

]
and the remainder term is

RT (h, κ) = −

{
(T − h)−1

(
e′1Ĵ

IV(h)−1
) ∑T−h

t=1 X∗
t

} ∑T−h
t=1 ξt (h, κ)√︂

(T − h)
(
e′1J

−1
)
V (h, κ)

(
e′1J

−1
)′ .

As in Proposition 3.1, we show that for any {κT } and λ ≠ 0(p+1)×1

(A)
{
(T − h)λ′V (h, κT )λ

}−1/2 ∑T−h
t=1 λ′X∗

t ξt (h, κT )
d−−−−−−→
PκT

N (0, 1),

(B)
(
λ′V̂ IV(h)λ

)
/
(
λ′V (h, κT )λ

) p
−−−−−−→

PκT

1 and Ĵ IV(h)
p

−−−−−−→
PκT

J ,

(C) RT (h, κT )
p

−−−−−−→
PκT

0.

The technical steps for (A), (B), and (C) are stated in Lemmas B.11, B.12 and B.13 in Appendix B.1. The
rest of the argument is as in Proposition 3.1. □
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CHAPTER 4

ESTIMATING FLEXIBLE INCOME
PROCESSES FROM SUBJECTIVE

EXPECTATIONS DATA: EVIDENCE FROM
INDIA AND COLOMBIA

WITH MANUEL ARELLANO, ORAZIO ATTANASIO AND SAM CROSSMAN

4.1 Research context

Households allocate current income between consumption and savings taking into account the uncertainty
about their future income as they perceive it. How persistent they perceive their future income flows to be,
their dispersion or asymmetry are all subjective features of households’ income uncertainty that critically
impact their spending plans. Those perceptions and their heterogeneity across households are also key de-
terminants of economy-wide consumption inequality.

Conventional approaches to identify the stochastic process of uncertain variables are indirect, relying on
statistical models of the dynamics of the realized variables and/or models of choice.1 Under rational expec-
tations, income dynamics as perceived by households may coincide with the dynamics of realized income,
but this needs not be the case. An alternative direct approach is to rely on subjective probabilistic expecta-
tion questions from surveys. In this chapter, we develop a methodology for modeling household income
processes using subjective expectations of future income. Our approach is flexible enough to assess the ex-
tent of nonlinear persistence and non-Gaussian distributional features in households’ perceptions. We then
take our methods to subjective expectations data elicited within two surveys that were conducted in Colom-

1See surveys of the literature on earnings dynamics in Meghir and Pistaferri (2011), Arellano (2014), and Altonji and Vidangos
(2023).
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bia and India. Learning about the nature of income uncertainty is particularly important in developing
economies where there tends to be more volatility.

Subjective expectations have been around for a while. For a long time they were received with skepticism
by some, but the current evidence is that individuals are able to respond to probabilistic questions about
variables that matter to them in a meaningful way (Manski, 2004, 2018; Delavande, Giné, and McKenzie,
2011). Specifically, for developing countries a lot of progress has been made in understanding the implications
of different methods of eliciting expectations (Attanasio, 2009; Delavande, 2023).

Some of the early work on subjective income expectations is due to Dominitz and Manski (1997b). They
used responses to the probability questions in their survey to fit respondent-specific parametric distributions,
which they compared with those implied by the income processes used in Hall and Mishkin (1982). They
found that subjective dispersion measures varied across households and were not proportional to subjective
medians (see also Dominitz (1998, 2001)). Attanasio and Augsburg (2016) were the first to use the subjective
expectations data in the survey of Indian households in combination with current income to estimate an
income process.

We are also motivated by recent work on flexible income processes. A recent literature has uncovered
significant non Gaussian nonlinearities in the dynamics of realized incomes (Arellano, Blundell, and Bon-
homme, 2017; Guvenen, Karahan, Özkan, and Song, 2021). These nonlinearities are potentially relevant for
individual behavior and policy design, like saving choices (De Nardi and Paz-Pardo, 2020) or optimal in-
come taxation (Golosov and Tsyvinski, 2015). It is of great interest to find out if these nonlinearities are also
present in the subjective expectations of poor households in developing contexts.

Our first contribution is to show how to identify and estimate a standard (log) linear dynamic model
for household income, with and without fixed effects, using data on subjective expectations and current in-
come. Our approach is to map the model directly to individual subjective probabilities, and in particular
to the observed log odd ratios, which we regard as noisy measures of the model counterparts, subject to an
additive elicitation error. Fixed effects estimation of the model parameters is robust to un-modelled distri-
butional heterogeneity of elicitation errors and, contrary to indirect approaches based on realized income,
does not suffer from Nickell bias (Nickell, 1981). This is a convenient feature of subjective expectation mod-
els, since unobserved disturbances do not contain future shocks but only measurement errors in the elicited
probabilities.

We use the log-linear model as starting point that conveys the main ideas of our approach. We then
propose a generalized estimation framework to deal with nonlinear income processes with unobserved het-
erogeneity. We consider a sieve approach with a sequence of flexibly parameterized predictive conditional
distributions. Despite their generality, these distributions can be cast as static fixed effects models that can
be estimated by within-group methods. We also explore extensions with more general patterns of unobserved
heterogeneity where log odd ratios can vary differentially with individual effects. Our approach allows us to
estimate subjective measures of risk and persistence that may differ across observed income levels, the size of
income shocks, and individual effects.

In our empirical analysis, we use two waves from both the Colombian and Indian surveys, combining
expectations with actual income data. In fact, the combination of the two is essential to our approach. In
both surveys, income expectations were collected using Dominitz and Manski (1997a,b) elicitation method,
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alongside realized income and other indicators of the nature and sources of earnings. Respondents are asked
to provide a relevant range of variation for their future income. Next, they are asked to report the probability
that their future income will exceed each of three equally-spaced points within their selected range. These
elicited probabilities are the individual-level outcomes in our models.

We reject the standard linear model in the data on subjective expectations from the two surveys in favor of
more flexible models. Subjective income distributions exhibit nonlinear persistence, along with dispersion
and skewness that vary with current income levels and unobserved heterogeneity. Interestingly, we find a
negative association between conditional dispersion and current income, and between conditional skewness
and current income.

Estimated persistence plummets for poorer households experiencing large positive shocks, but not for
relatively affluent households experiencing negative shocks. Those findings for the perceived risks of house-
holds in developing economies are partially consistent with the results found in Arellano et al. (2017) for the
realized incomes of US households from the Panel Study of Income Dynamics (PSID). Essentially, we find
low persistence for large positive shocks at the bottom of the income distribution as they do, but not for
large negative shocks at the top. In interpreting the results, we argue that the nonlinear persistence we find
for the poorest households is consistent with a poverty trap interpretation. We also find that unobserved het-
erogeneity matters, and is composed of household specific and village level factors. Households with large
fixed effects have more persistent histories overall and less variability in persistence with current income and
shock size. The pattern of nonlinear persistence is robust to allowing for more general forms of unobserved
heterogeneity, although quantitatively its importance is reduced.

The chapter is structured as follows. In the next section, we discuss how probabilistic subjective expecta-
tions are elicited in the two surveys that we use. Section 4.3 lays out our modeling and estimation framework,
first for a linear process with fixed effects and then for more flexible models. Section 4.4 describes the two
survey data sets that we use for the analysis. In Section 4.5, we present our empirical results. Finally, we
conclude in Section ??. The appendices contain additional results and technical material.

4.2 Eliciting subjective expectations

Designing subjective expectation questionnaires to elicit information about respondents’ perceived proba-
bility distribution of future variables is challenging. Several open questions remain in the growing literature
on the topic, ranging from the establishment of a metric for the variables of interest to the way conditional
and unconditional probability measures are elicited. As a consequence, important choices need to be made
throughout the process.

In this section, we first briefly discuss some of the outstanding issues in the literature and then describe
the approach used to elicit subjective expectations in our two surveys, which employed similar methods
and questionnaire designs. While not particularly novel, it is useful to describe and relate them to possible
alternatives.
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4.2.1 Anchoring subjective expectations

A first issue in the design of subjective expectation questions is establishing an anchor and a metric for the
variable whose probability distribution is being elicited.

In eliciting the probability distribution of future income, two different approaches have been used. In
some surveys, the current value of income is used as an implicit anchor, and respondents are asked the prob-
ability of a number of possible percentage changes of future income relative to current income. In other
contexts, respondents are asked to provide a range of possible values, often the minimum and maximum

for future income. These values are then used to define a number of intervals and respondents are asked the
probability that future income will fall in each of these intervals. This approach was developed by Dominitz
and Manski (1996, 1997a,b) and has been widely adopted in surveys across both developed and developing
economies, including the Indian and Colombian datasets we use. The precise formulation of these questions
is described in an elaborate script, which is reported in Appendix C.5.

Morgan and Henrion (1990) point out that asking first for the minimum and maximum of possible
income realizations may help reduce two common problems in the elicitation of expectations. The first is
overconfidence, wherein respondents focus too much on central tendencies and therefore understate the true
uncertainty that they face — asking about the minimum and maximum first helps to prime respondents to
think about the full range of probable realisations. The second is anchoring or framing, whereby figures
provided by the interviewer might influence the responses provided: if the chosen cdf support points are
specified by the interviewer, respondents may be inclined to think these points are salient for one reason or
another, and therefore likely to restrict their answers around those values.

Using current income as an anchor for future income might be problematic when the former is un-
usually low or high, in that it is unclear whether the elicited probability distribution around that value is
particularly informative. This is avoided by the minimum/maximum approach as respondents can re-center

their answers around the information they have. On the other hand, it is not obvious whether the elicited
minimum/maximum values are really what they are labeled to be or rather some arbitrary low or high per-
centile of the subjective future income distribution.

4.2.2 Eliciting subjective probability distributions

Having registered the minimum and maximum, the interviewers elicit from respondents information on
several intermediate points on the subjective cumulative distribution function (cdf ) of future total house-
hold income. The minimum and maximum are used to compute, using a simple pre-specified algorithm, a
set of J points within the support of the distribution of future income {yk1, yk2

, . . . , ykJ }. Respondents are
then asked about the probabilities {πk1, πk2

, . . . , πkJ } they assign to their next period income being larger
than these points. In both survey data from India and Colombia, J = 3 was used. Furthermore, as shown in
Figure 4.1, each sub-interval is of equal size.

A possible objection to this method is that respondents, especially from disadvantaged backgrounds,
might be unfamiliar with the concept of probability and with its translation into numerical values. These
issues might be particularly relevant in the context of developing countries, where respondents often have no
or very limited formal education. In such a situation, the use of preliminary priming questions that could
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min A B C max
πA

πB
πC

Note. The figure illustrates the way of eliciting three points on the subjective income distribution. Respondents are
asked to provide ymin and ymin. The interviewer then computes yB = (ymin + ymax )/2, yA = (ymin + yB )/2 and yC =

(yB + ymax )/2, and proceeds to elicit probabilities πA, πB and πC .

FIGURE 4.1. A description of the elicitation process.

familiarize respondents with the theoretical constructs that researchers want to elicit, as well as the use of
visual aids, may be advisable (Delavande et al., 2011).

For this reason, in both surveys, respondents were first primed in the use of the concept of probabil-
ity and conditional probability through specific examples about future uncertain events. In particular, a
sequence of questions was asked about the likelihood of rain, designed to ensure that probabilities are non-
decreasing. For instance, the question “What is the probability that it will rain tomorrow?” is followed by
“What is the probability that it rains in the next seven days?”, pointing out that the latter should be no
smaller than the former.

As a form of visual aid for the probability questions, a ruler graded from 0 to 100 was used. Respondents
were instructed to point to 0 to express the certainty that an event will not happen, to 100 for the certainty
that it will, and to intermediate points to express uncertainty. While this approach seems to have worked in
this context, it is not a silver bullet: different methods might be necessary in different contexts.2

During the data collection, interviewers were instructed to correct respondents’ inconsistent answers
during the training phase but not during the actual subjective expectations questions about future income.
Respondents might, therefore, provide inconsistent answers, thereby flagging possible quality problems in
the data. We explore this in depth in Section 4.4.

When designing expectations questions, an important choice is the number of intervals into which the
range of values identified by the minimum and maximum is divided and the placement of cutoff points ykj
for j = 1, . . . , J . While a high number of cutoff points would increase the information on the cdf, improving
the ability to fit flexible and possibly complex subjective cdf ’s, such high values of J might impose an excessive
burden on respondents and jeopardize the quality of the data. In a variety of contexts, J has been set at 1 or
3.

Another issue is whether the minimum and maximum should be treated as the genuine minimum and
maximum of future income or as values where the cdf takes values relatively close to 0 or 1, respectively. We
avoided committing to a specific interpretation of the minimum and maximum values, so that they play
no role in our formal analysis beyond providing a range of respondent-specific points at which the cdf is
elicited.

2Other surveys have asked respondents to allocate stones, balls or other items available in the local context, into a number of
bins, see, for instance, Delavande and Rohwedder (2008).
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4.3 Mapping income processes to subjective expectations

In this section, we show how to use data on subjective expectations to estimate models of household income
dynamics, as perceived by respondents. We discuss the econometric approach we take to this problem, and
show that the use of subjective expectations data poses inference problems that are conceptually different
from those present when estimating dynamic models using actual income realisations. We start our discus-
sion with a relatively simple (log) linear model, which is particularly useful in conveying the main ideas of
our approach. We then generalize our approach and show that these data can also be used to estimate more
complex and flexible income processes.

We interpret the models of the income processes as representing the conditional subjective probability
distribution respondents hold, given the information available to them, including current income and other
conditioning variables. To estimate the parameters of these models we then match the answers respondents
give to the subjective expectations questions to the corresponding quantities implied by the statistical model
we specify. As we discuss below, the identification of the structural parameters of the statistical models we
consider relies on a number of assumptions. However, we argue that such assumptions are different and
weaker than those used when estimating such models with actual income realisations. This approach allows
us to use a wide class of estimators without incurring the biases that would affect such estimators when using
actual income realizations.

4.3.1 Modeling approach

We take advantage of the availability of subjective expectations data to fit a model for the conditional cdf

directly to the observed individual subjective probabilities. Let a household’s subjective (conditional) cu-
mulative probability distribution of log future income yi,t+1 be denoted as

Fit (r) = P
(
yi,t+1 ≤ r

��Iit ) , (4.1)

where Iit denotes the information set available to household i in period t. As discussed in Section 4.2, the
survey elicitation process employed in the datasets we use yields noisy measurements pjit of Fit

(
rjit

)
for rjit =

rmin
it +

(
rmax
it − rmin

it

)
j/4

(
j = 1, 2, 3

)
, or equivalently of the subjective cumulative odds

ℓ∗jit = logit
[
Fit

(
rjit

)]
, (4.2)

where logit(p) = ln
[
p/(1 − p)

]
. We model the log of the subjective cumulative odds, so that the outcomes

we consider have an unlimited range of variation.3 We also allow for a survey elicitation error εjit, which
is plausibly assumed to be additive in the log of cumulative odds, so that the observed cumulative odds
ℓjit = logit

(
pjit

)
are given by

ℓjit = ℓ∗jit + εjit . (4.3)

3Notice that this transformation rules out observations with pjit = 0 or pjit = 1. In Appendix C.4, we explore an alternative to
(4.2) that introduces an adjustment to the logit function that can be interpreted as proportional to the accuracy of the elicitation
process. This approach allows us to retain these observations and verify that our empirical results are largely unchanged.
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We assume that εjit is a classical measurement error, in the sense that it is mean independent of Iit, the in-
formation set in equation (4.1). Apart from that, we allow for dependence in εjit across j and t. Moreover,
the variance or other moments of εjit may change with j and t, and may also depend on variables in the
information set. Modeling the distribution of elicitation errors is of separate interest, but the linearity as-
sumption allows us to leave this distribution unmodeled while being robust to a variety of elicitation error
configurations.

We only observe three points of Fit for each unit, but many different points across units. The general
idea is to learn by combining data for all units; as long as there is sufficient variability in rjit and common
features in the probability distributions across units, they are potentially nonparametrically identifiable.

Information set. The information set is assumed to be Markovian in the sense that given the current
values of the relevant variables, values from earlier periods cannot reduce subjective prediction uncertainty.
In our analysis, the Markov property is assumed to hold conditionally given unobserved heterogeneity.

The set Iit consists of time-varying and time-invariant characteristics. The time-varying variables include
observable current income yit and indicators xit of the nature and sources of income, such as the number of
earners in the household, as well as household demographics. As for the time-invariant characteristics, we
adopt a latent variable approach, assuming that they can be captured by an unobservable individual effect αi.
This effect is intended to encompass both household-level characteristics and geographical (say, village-level)
characteristics. We therefore assume that Iit =

(
yit , xit , αi

)
. The individual effect αi may be correlated with(

rjit , yit , xit

)
.

A system of equations. The relationship between the information set available to individual households
(part of which might be unobservable to the econometrician) and the elicited conditional cdf s depends on
the specific model being considered. Here we define such a relationship as a function g, so to obtain:

ℓ∗jit = g
(
rjit , yit , xit , αi

) (
i = 1, . . . , n; j = 1, 2, 3; t = 1, 2

)
(4.4)

where g is a non-decreasing function in its first argument. We specify below the function g corresponding
to different models of income dynamics. Thus, our econometric model consists of a system of six equations
for n households with the addition of measurement errors in elicited probabilities.4

Identification of nonlinear panel data models with continuous outcomes and unobserved heterogene-
ity has been discussed in Evdokimov (2010), Arellano and Bonhomme (2016), Hu (2017), and Schennach
(2022), amongst others. Nonparametric identification of the response function g and the conditional dis-
tribution of αi in model (4.3) and (4.4) can be established using the arguments in Evdokimov (2010), under
the assumption that the additively separable disturbance terms are conditionally independent over time, and
independent of the individual effect αi.

Next, we consider alternative specifications of the income model, starting with the simplest version,
which assumes linearity and corresponds to models that have been widely used in the literature on income

4Note that an additive αi could be reflecting both persistent elicitation differences (that is, part of measurement error) or
heterogeneity in income risk. This distinction will matter for interpretation when documenting the effect of “heterogeneity” in
nonlinear models.
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processes.

Income processes. In a life-cycle model of income and consumption choices, a popular specification de-
composes household income into the product of a deterministic (or profile) component, which might in-
clude a fixed effect, and a stochastic component, often in the form of persistent shocks with autoregressive
dynamics (sometimes also including transitory shocks). A log-linear model of this kind with no transitory
shocks can be written as

Yi,t+1 = Y
ρ
itVi,t+1 exp

(
pi,t+1 + αi

)
,

where Yit is the level of income for household i at time t, Vi,t innovations to income, pi,t captures house-
hold age and demographic variables, and αi represents the fixed effect. In both of our data sets, these fixed
effects can be decomposed into village-level and purely idiosyncratic effects. We omit this distinction here
for notational simplicity. Taking logs, we have

yi,t+1 = ρyit + pi,t+1 + αi + vi,t+1, (4.5)

where yit = lnYit and vit = lnVit.

One could consider decomposing the stochastic part of income into persistent and transitory compo-
nents. In a standard persistent/transitory model, consumers are assumed to observe the values of the two
components as separate state variables, whereas they remain unobserved to the modeler. However, when
conditioning on current income as we do, this situation introduces a measurement-error problem that can
be dealt with instrumental variables. Such an approach cannot be used in a two-wave panel like ours. While
we do not consider this possibility in our application, we do estimate multiple-state processes that include
indicators of the nature and sources of income, whose motivation is not entirely different from that behind
unobservable income component models.

4.3.2 Predictive distributions for linear income processes

We first illustrate how our approach allows us to estimate conditional distributions of subjective income
risk when the underlying income process is a standard log-linear autoregressive model. This is a convenient
benchmark which provides a simple framework to illustrate identification and estimation issues, while high-
lighting the benefits of using subjective expectations data relative to a more standard approach using income
realizations.

Considering a first-order autoregressive process with fixed effects,5 we can rewrite equation (4.5) as fol-
lows:

yi,t+1 = αi + ρyit + σvi,t+1, (4.6)

where vi,t+1 are assumed to have a logistic distribution independent of yit and αi. The corresponding condi-

5We discuss specifications with time-varying characteristics below; see Section 4.3.3. On a similar note, we include time (wave)
effects in all models that we consider, but omit them from explicit formulas for notational simplicity.



ESTIMATING FLEXIBLE INCOME PROCESSES FROM SUBJECTIVE EXPECTATIONS DATA 75

tional cdf is then

P
(
yi,t+1 ≤ r

��yit , αi) = P
(
vi,t+1 ≤

r − αi − ρyit
σ

���yit , αi)
= Λ

( r − αi − ρyit
σ

)
,

where Λ(x) =
(
1 + exp(−x)

)−1 is the standard logistic cdf. Applying the logit transformation, it follows
that in this case g in (4.4) is linear, since we can write

ℓjit = ℓ∗jit + εjit = β0rjit + β1yit + ηi + εjit , (4.7)

where β0 = 1/σ , β1 = −ρ/σ and ηi = −αi/σ . The logit transformation in (4.2), therefore, allows us to
map the “structural” parameters ρ and σ to the “reduced-form” estimation parameters in equation (4.7).6

Equation (4.7) is a linear panel model with fixed effects and strictly exogenous regressors, and a standard
within group estimator yields consistent estimates of the parameters.

As discussed in Section 4.4 below, in both surveys we use, the observations are clustered in villages.
Therefore, when considering fixed effects, we allow for village-specific means via the following decompo-
sition:

ηi = η̄v(i) + η̃i,v(i) ,

where the subscript v(i) indicates the village of household i, η̄v(i) is a village-specific mean, and η̃i,v(i) denotes
the deviation of the individual fixed effect from the village average. Regardless of whether the variance of the
purely idiosyncratic fixed effects is constant across villages or not, we can estimate the variance of the village
fixed effects and the unconditional variance of the purely idiosyncratic fixed effects.

Subjective expectations and income realizations. Despite superficial similarities there are profound
differences between the subjective expectation and observed income approaches. First, with subjective ex-
pectations data, an AR(1) model without fixed effects can be estimated on a single cross-section, as information
on expected future income (on the left-hand side) is provided by subjective expectations. If fixed-effects are
included, the variance of the shock (a measure of risk) can still be estimated on a single cross-section, and
the full model would require two waves of data — whereas the observational approach would need at least
three.

Second, estimates from subjective expectations represent the perceptions individual households have
of their own income, even if they do not have rational expectations. Such an object is what is relevant for
household consumption and saving decisions.

Finally, estimation of the model using subjective expectations data does not suffer from the so-called
Nickell bias, and so there is no need to use instrumental variable techniques, despite the small time dimen-
sion. This is typically not the case when using only income realizations. The reason is that outcomes are not
future incomes but rather points in the predictive distribution; therefore, the error term does not contain
future shocks but only measurement error in predictive probabilities.

6We would obtain a similar mapping if we assumed, for instance, that ℓjit = probit
(
pjit

)
and vi,t+1 ∼ N(0, 1), independent

of yit and αi .
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While the linear model is useful to illustrate how subjective expectations can be used to recover the pa-
rameters of a standard income process, it still imposes a number of tight restrictions regardless of whether
subjective expectations or realized income data are used in estimation. For example, persistence ρ and dis-
persion σ are common to all households in equation (4.7), a restriction that we relax next.

4.3.3 Enlarging the state space

The existing literature has mainly focused on single-state processes in which current income (or a persis-
tent/transitory decomposition of income) is a sufficient statistic for the information set in a household’s
predictive distribution of future income. However, it is possible that indicators of the nature and sources
of income and/or the occurrence of specific shocks help predict future income over and above total current
income. If so, consumption decisions might depend on the joint probability distribution of a vector of fu-
ture variables. Multivariate models of income dynamics are beyond the scope of this chapter, but it is still
of interest to find out if our subjective probabilities of future income depend on a larger state space than
current income.

Thus, additional flexibility can be added by including relevant time-varying household characteristics xit
in the conditioning set, which extends (4.7) to

ℓjit = β0rjit + β1yit + δ′0xit + δ′1xityit + ηi + εjit . (4.8)

In our empirical analysis, we also provide results for models of this type.

4.3.4 Flexible income processes

We now generalize the linear model in equation (4.7) to the following specification:

ℓjit = β0(rjit) + β1(rjit)ψ
(
yit

)
+ β2(rjit)ηi + εjit , (4.9)

where βs(rjit) for s = {0, 1, 2} andψ
(
yit

)
are functions such as splines or orthogonal polynomials and, again,

we omit time-varying observables xit for simplicity. Models with additive fixed effects correspond to setting
β2(rjit) = 1, whereas the full generality of (4.9) allows for interactive effects.7 The linear model (4.7) is a
special case of (4.9) with linear β0(·) and ψ (·) and constant β1(·) and β2(·).

This model is reminiscent of distribution regression, but the empirical setup is rather different. In distri-
bution regression, one would use realized data on yi,t+1 and estimate a sequence of logit or probit regressions
for binary outcomes defined as I (yit < r) to get estimates of βk(r) for different chosen values of r.8 In our
context, we observe P

(
yi,t+1 ≤ r

��yit , αi) for r = rjit, so that we can fit these observed probabilities to the spe-
cific model we consider. To perform such an exercise, the functions βs(r) andψ (·) need to be parameterized.
Implementation and estimation details are discussed in Section 4.3.5 below.

7In principle, interactions between ηi and yit could add even greater flexibility, but we did not explicitly include them to
preserve the simplicity of estimation given the characteristics of our samples. Still, the growth-rate form of the model that we
discuss in Section 4.3.5 effectively incorporates such interactions.

8See Foresi and Peracchi (1995), and Chernozhukov, Fernández-Val, and Melly (2013).
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Measuring dispersion, skewness, and persistence. The coefficients of the splines and polynomials in
equation (4.9) may not have a straightforward or meaningful interpretation on their own. Instead, we use
them to compute quantile-based measures of dispersion, skewness and persistence, which characterize some
of the properties of the nonlinear models of interest. To do so, we need to calculate the implied quantiles
from our conditional cdf model. Let qit (τ) be the τ quantile from the model for some τ ∈ (0, 1), which is
the value of r that solves the equation

g
(
r, yit , xit , αi

)
= logit (τ) . (4.10)

For example, for the linear autoregressive model in equation (4.6), the conditional quantile is defined as

qit (τ) = ρyit + αi + σ logit (τ) . (4.11)

More generally, the solution can be found numerically using bracketing or interpolation methods.

A standard measure of dispersion is the interquantile range:

IRit (τ) = qit (τ) − qit (1 − τ) , (4.12)

where usually τ = 0.75 or τ = 0.90. For example, for the linear AR(1) model we have

IRit (τ) = σ × 2 logit (τ) .

Dependence of IR on yit and/or ηi indicates heteroskedasticity. Similarly, the Bowley-Kelley measure of
skewness for some τ > 0.5 is given by:

SKit (τ) =
[
qit (τ) − qit (0.5)

]
−

[
qit (0.5) − qit (1 − τ)

]
qit (τ) − qit (1 − τ) . (4.13)

Finally, in nonlinear models we use the measure of persistence proposed in Arellano et al. (2017), which is
defined as :

ρit (τ) =
𝜕qit (τ)
𝜕yit

. (4.14)

Using the chain rule, ρit (τ) can be written as a scaled derivative effect of realized income in our model for
the cumulative distribution:

ρit (τ) = −
𝜕g

(
qit (τ) , yit , xit , αi

)
𝜕yit

/
𝜕g

(
qit (τ) , yit , xit , αi

)
𝜕r

. (4.15)

For the linear AR(1) model we simply have ρit (τ) = ρ. In general, the persistence of the process will depend
on the position of a household in the distribution of current income, fixed effects, and the value of τ.

Note that an equation such as (4.6) relates the realized shock vi,t+1 with rank Λ(vi,t+1) to the realized

outcome yi,t+1 given yi,t. However, we can also consider hypothetical shocks and their corresponding hypo-
thetical outcomes. For example, we can ask what would be the t + 1 outcome if the t + 1 shock was one
with rank τ ∈ (0, 1). This is precisely the information provided by the conditional quantile function (4.11).
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In the nonlinear generalization, the persistence measure (4.14) provides the weight of current income in the
function that produces future income when a household is hit by a shock of rank τ.

In our analysis we do not rely on realized future outcomes and realized future shocks, but on the subjec-
tive conditional probability distribution of future outcomes, which allows us to speak about the impact of
potential (subjective) shocks on potential future outcomes.

4.3.5 Implementation and estimation

We now discuss the specification of the various functions that enter the flexible income model in equation
(4.9) and the estimation of the relevant parameters.

Specification

The functions β(·) andψ (·) in (4.9) need to be parameterized. We first reformulate the model we are consid-
ering as a predictive distribution for income growth, since departures from linearity may be better captured
for income changes than for levels. This change is immaterial for the linear model, but leads to different
approximating models for nonlinear specifications.

Predictive distributions for growth rates. The elicited probabilites pjit, which are noisy measures of

Fit

(
rjit

)
= P

(
yi,t+1 < rjit

���Iit) , also measure FΔ
it

(
sjit

)
= P

(
Δyi,t+1 < sjit

���Iit) for sjit = rjit − yit. This is so be-

cause yit is part of the information set. The function FΔ
it

(
sjit

)
is the predictive distribution of future income

growth and is connected to Fit
(
rjit

)
by a simple translation of its argument: Fit (r) = FΔ

it

(
r − yit

)
. Thus,

in a non-parametric sense, there is no difference between estimating one function or the other. However,
in practice it may be better to estimate flexible models for FΔ

it

(
sit

)
instead of Fit (r), even if the interest is in

Fit (r).
If the true process is a random walk, FΔ

it (s) will be a constant cdf, which does not depend on yit, so
that modeling FΔ

it (s) is equivalent to modeling departures from a random walk. More generally, it can be
expected that standardizing the range of variation in the argument by subtracting yit will help modeling.
Another consideration is that in the cdf of Δyi,t+1, the nonlinearities considered in Arellano et al. (2017) are
close to tail departures from linearity in a single-index logit or probit, but require translations of the index
in the cdf of yi,t+1.9

In the linear case, the model to be estimated remains essentially unchanged by targeting log income
changes instead of log levels.10 However, for nonlinear specifications, the actual flexible model to be esti-

9This observation can be made precise using the simple switching income process with nonlinear persistence in Arellano et al.
(2017, equations (S6) and (S7)), where the predictive probit of income growth for a household around median income is a straight
line independent of income. For a low (high) income household, the line jumps upwards (downwards) at right (left) tail values
of income changes, but remains a straight line for most of the range of variation. In contrast, the predictive probit of log income
will change with the income level across the entire income distribution, compounded with additional nonlinear variation in the
tails.

10The linear reparameterized equation is
ℓjit = β†0sjit + β

†
1 yit + ηi + εjit ,

where β†0 = β0, β†1 = β1 + β0 =
(
1 − ρ

)
/σ and sjit = rj − yit .
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mated will be different:
ℓjit = β†0(sjit) + β

†
1 (sjit)ψ

(
yit

)
+ β†2(sjit)ηi + εjit . (4.16)

For a given level of complexity, the functions β†
k
(sjit) may be better approximators to a class of models of

interest than βk(rjit).

Implementation. Our empirical specification will be based on (4.16), taking the components of ψ (·) in a
polynomial basis of functions. We specified ψ (·) as a vector of low-order Hermite polynomials in standard-
ized current income. The functional coefficients β†

k
(·) are taken as natural cubic splines on sjit, also entering

in standardized form in those functions. In general, fitting a natural cubic spline with L ≥ 2 knots requires
estimating L parameters. Further details are provided in Appendix C.2.

Note that a flexible specification of the β†
k
(·) coefficients can undo the possible restrictiveness of the logis-

tic transformation that we use. For example, if the income process is a random walk with non-logistic shocks,
for a sufficiently flexible specification of the intercept term β†0(·), the formulation P

(
Δyi,t+1 < sjit

���Iit) =

Λ(β†0(sjit)) will capture a broad class of cdf s regardless of Λ(·).

Estimation

In specifications with β†2(sjit) = 1, the model is a static fixed effects regression that can be consistently es-
timated using the within-group estimator. Our estimation approach allows for the introduction of a ridge
penalty λ > 0 on the higher-order coefficients of the spline to control overfitting in the more flexible speci-
fications, although the results reported in the chapter set λ = 0.

Rearrangement. Since monotonicity of g is not imposed, the estimated curve may be non-monotone. To
address this issue we follow the method proposed in Chernozhukov, Fernández-Val, and Galichon (2010),
which consists in sorting the original estimated curve into a monotone rearranged curve.

Substantial violations of monotonicity may signal misspecification. When using flexible specifications
in growth-rate form, the rearranged and non-rearranged estimated probability distribution functions that
we obtain are virtually identical.

Estimating models with interacted fixed effects. In specifications where β†2(sjit) depends on unknown
parameters, there is an incidental parameters problem in the fixed-effects approach. Specifically, the least-
squares estimator of the model’s common parameters based on their joint estimation with

(
η1, . . . , ηn

)
suffers

from an errors-in-variables bias and is not consistent in a short panel. The difficulty owes to the fact that η̂i,
which is used as a regressor, is a noisy estimator of ηi.

To obtain consistent estimates that take into account small-T errors in the estimated fixed effects, one can
resort to either method-of-moments or pseudo maximum-likelihood approaches. A method-of-moments
approach to estimating a random coefficients model for panel data is developed in Chamberlain (1992). Here
we use a simple extension of the linear model in (4.7) to illustrate how to construct a linear instrumental-
variable estimator of the kind that we employ in obtaining our empirical results, and defer to Appendix C.2
a more general discussion of the estimation of models with interacted effects.
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A simple instrumental-variable estimator. Let us consider the model

ℓjit = β0rjit + β1yit +
(
1 + β2rjit

)
ηi + εjit , (4.17)

which boils down to the standard linear income process when β2 = 0. However, solving for the conditional
quantile function, we can see that this model corresponds to a very different income process with heteroge-
neous risk and persistence that generalizes equation (4.6) to

yi,t+1 = −
ηi

β0 + β2ηi
−

β1
β0 + β2ηi

yit +
1

β0 + β2ηi
vi,t+1.

To get an estimating equation, first note that taking deviations from individual means does not remove
unobserved heterogeneity from model (4.17):

ℓ̃jit = β0r̃jit + β1ỹit + β2r̃jitηi + ε̃jit , (4.18)

where ℓ̃jit = ℓjit − ℓ̄i, r̃jit = rjit − r̄i, and so on. However, we can use the transformation

rjit ℓ̄i − r̄iℓjit = β1

(
rjit ȳi − r̄iyit

)
+ r̃jitηi +

(
rjit ε̄i − r̄iεjit

)
to substitute out r̃jitηi in (4.18) and obtain

ℓ̃jit = β0r̃jit + β1ỹit + γ
(
rjit ȳi − r̄iyit

)
+ β2

(
rjit ℓ̄i − r̄iℓjit

)
+ ξjit , (4.19)

where ξjit =
(
1 + r̄i

)
εjit − (1 + rjit)ε̄i and γ = −β1β2. Whereas the error term ξjit is mean independent of rjit

and yit for all (t, j) (which we collect into wi), rjit ℓ̄i − r̄iℓjit is an endogenous variable in equation (4.19). To
motivate an IV estimator, note that

E
[
rjit ℓ̄i − r̄iℓjit

���wi] = β1

(
rjit ȳi − r̄yit

)
+ r̃jitE

[
ηi
��wi] .

Approximating E
[
ηi
��wi] by the projection of ηi on w̄i suggests using r̃jit r̄i and r̃jit ȳi as external instruments

for rjit ℓ̄i − r̄iℓjit and estimating equation (4.19) by two-stage least squares (TSLS). The restriction γ = −β1β2

is not required for identification and might be ignored to avoid nonlinear estimation.

4.4 Data

We use data on subjective income expectations in combination with data on realized income from two de-
veloping country contexts — rural India and Colombia. In both cases, the subjective income expectations
were collected as part of broad surveys aimed at evaluating development interventions. Both interventions
were targeted at a poor and rural population.

In Figure 4.2, we plot the distribution of reported total household income across countries and survey
waves. Income is measured in 2010 PPP USD, which we use for both countries throughout the analysis.
While the contexts we are studying are very distinct, the two distributions are remarkably similar, indicating
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that we are concerned with comparably poor populations. Average annual household income in the sample
is $5,924 for India and $5,013 for Colombia, with a standard deviation of $4,632 and $3,759, respectively.
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Note. The Figure shows the distribution of total household income in the two study populations, in 2010 PPP USD. Monthly
income in Colombia is annualized for comparability.

FIGURE 4.2. Household income across study populations.

In what follows, we briefly describe the survey contexts and the characteristics of the respondents and
their households. We then provide some evidence about the validity of the expectations data. In both sur-
veys, subjective expectations data were elicited using the approach described in Section 4.2. The main dif-
ference between the two surveys is in the horizon of future income: in India future income refers to the
following year, while in Colombia is the following month.

4.4.1 India

The data in India were collected in 64 villages in Anantapur, a district located in the southern state of Andhra
Pradesh, for the evaluation of a microfinance intervention (loans for cow or buffalo); see Augsburg (2009)
for additional details. A typical household we consider has five members and a male, 45 years-old household
head. Most households belong to the “Other Backward caste”, a collective term used by the Government
of India to classify castes which are educationally or socially disadvantaged. A further 13% belong to the
Scheduled Castes, 5% to the Scheduled Tribes, and the remaining 28% to the General Caste. More than 60%
of household heads had not undergone any formal education, and only 10% had some primary education.
The average household depends on three income sources, with agriculture being the primary activity — as
farmers (25%) or as agricultural labourers (64%). Additional details can be found in Attanasio and Augsburg
(2016, Table 1).

In Table 4.1, we present descriptive information on income sources and shocks, which we later integrate
in our models and which provide contextual information on the importance of different sources of risk that
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TABLE 4.1. India – income shocks and sources

≤2 sources 3 sources 4+ sources

Proportion 0.423 0.372 0.205
0% farm 0.347 0.155 0.054
Up to 50% farm 0.235 0.431 0.502
More than 50% farm 0.419 0.414 0.444

1.00 1.00 1.00
No shocks 0.113 0.087 0.092
Health shock 0.233 0.194 0.200
Agriculture shock 0.531 0.606 0.603
Other shocks 0.123 0.113 0.105

1.00 1.00 1.00

Note. The table shows relative frequencies (proportions) of different components of total household income for the Indian data,
pooling across the two waves. The first row displays the proportion of households reporting up to two different income sources,
three income sources, and more, respectively. The next three rows report the proportion of current income stemming from farm-
related activities for each subgroup by income source. The final four rows show the relative frequency of the most important
types of (negative) shocks faced by households during the previous year, again for each income source subgroup.

households face. Households with less than three, three, and four or more income sources account for 42.3%,
37.2%, and 20.5% of the sample, respectively. For each such category, we report the percentage of income
from farm-related activities (which includes agriculture) and the types of shocks experienced. Households
with at most two income sources are relatively more likely to report no income from farm-related activities.
Moreover, the likelihood of reporting no shocks is about 10%, health shocks about 20%, and agricultural
shocks about 50-60%, quite uniformly across household categories.

After the household baseline sample was interviewed in January/February 2008, a follow-up survey was
conducted in April/June 2009. Respondents were asked to provide information on income and subjec-
tive expectations in both survey rounds. Of the 1,036 households that made the original sample, 947 were
re-interviewed in the second wave. We drop observations with missing income or at least one reported prob-
ability and those with elicited expectations that violate basic probability laws, following the analysis in At-
tanasio and Augsburg (2016). This yields a balanced panel with N = 770 households. Details are reported
in Table C.1.1 in Appendix C.1.1.11

About a quarter of these households were clients of a microfinance institution (MFI) and had in 2008
loans provided livestock investment. The remaining households were either residing in the same villages or
in villages the MFI considered targeting in the future. The data was collected to evaluate the provision of
these livestock loans, which aimed at enabling households to engage in milk-selling as an additional income-
generating activity, thereby reducing their dependence on outcomes of the main cropping seasons.

In both survey waves, the interviewers — who visited the respondents in their homes — elicited infor-
mation on points on the respondents’ subjective household income distribution. The technique discussed
in Section 4.2 was used after explaining the approach in detail, practicing with rainfall questions, and using
a ruler as a visual aid. Respondents were asked about their expected household income for the year follow-
ing the interview. This interval was chosen considering the irregularity of income and to ensure key income

11This attrition rate is slightly higher than that reported in Attanasio and Augsburg (2016). As documented in the Appendix,
these differences are mostly due to removing outliers in reported and expected income.
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periods were covered.

As discussed in detail in Attanasio and Augsburg (2016), respondents were not only willing to provide
(expected) income information, but also provided sensible answers that reflected their beliefs. In particular,
(i) over 97% of respondents provided responses to all three thresholds, (ii) violations of basic probability laws
(monotonicity and wrong “direction”) make up less than 1% of the sample, (iii) very few households bunch
at 100% for the highest threshold or 0% for the lowest, indicating that the minimum and maximum expected
income are well elicited, (iv) respondents made otherwise use of the entire range, although some bunching
at multiple of 5s was observed (possibly because these were indicated on the ruler), and (v) expectations
correlate sensibly with household characteristics. We report further details in Appendix C.1.1.

FIGURE 4.3. India: frequencies by threshold
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Note. The figure displays subjective probability frequency plots for each threshold and survey round, as shown in the legend.
Probabilities are rounded to the nearest tenth.

Figure 4.3 provides a summary of the distribution of elicited probabilities by threshold and survey round.
The upper left panel displays the absolute frequencies for reported cumulative probabilities below the first
threshold, which as expected are skewed to the right — the mode being at 0.1 in both survey rounds. On
a similar vein, the distribution is mostly concentrated within the 0.3-0.6 range for the midpoint threshold,
and skewed to the left for the highest threshold.

Figure 4.4 plots together the elicited midpoint of the predictive distribution and realized current in-
come, and shows an extremely high cross-sectional correlation between household’s current income and
their median subjective assessment for next year’s income. This evidence suggests that the subjective income
expectations data provide useful and meaningful information.
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FIGURE 4.4. India: current income and reported midpoint
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Note. The solid black corresponds to the linear regression fit.

4.4.2 Colombia

The data in Colombia were collected in 122 of the country’s poorest municipalities located in 26 of 34 de-
partments to evaluate the introduction of a Conditional Cash Transfer (CCT) program, called Familias en

Acción (FEA), a welfare program run by the Colombian government to foster the accumulation of human
capital through improved nutrition, health, and education in rural Colombia. As many CCTs around the
world, FEA pursued its objective through a cash transfer conditional on child vaccinations, development
checks, school attendance, and courses for the mother. The program was targeted to the poorest sectors of
society; recipients typically fall into the bottom 20% of Colombian households living in rural areas.12

The evaluation first conducted a baseline survey in 2002, approaching 11,500 and interviewing 11,462
households. We use data from the two follow-up survey rounds, conducted from July to November 2003
and again from November 2005 to March 2006, completing interviews to 10,743 and 9,463 households,
respectively.13 At the time of the second survey, about half of respondent households were target beneficiaries
of Familias en Acción.

Survey respondents are predominantly female (65%). Just over half (54%) are household heads, living in
households that, on average, included another five members, with an average age of 43 years and with low
levels of education: 24% of household heads have less than primary education, with an average of 3.5 years

12In particular, recipients (or potential recipients, in the case of the evaluation sample) were in the lowest category of the
SISBEN indicator, which is used to target most social programs and to set utility prices. See Attanasio, Battistin, and Mesnard
(2012, Section 2).

13These figures correspond to the first row in Table C.1.3 in Appendix C.1.2, which also provides additional information on
response rates and sample sizes.
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TABLE 4.2. Colombia – income shocks and providers

1 earner 2 earners 3+ earners

Proportion 0.380 0.413 0.207
Up to 75% regular 0.145 0.269 0.223
More than 75% regular 0.080 0.359 0.434
100% regular 0.775 0.372 0.344

1.00 1.00 1.00
No shocks 0.773 0.749 0.712
Health shock 0.089 0.093 0.124
Other shocks 0.138 0.158 0.163

1.00 1.00 1.00

Note. The table shows relative frequencies (proportions) of different components of total household income for the Colombian
data, pooling across the two waves. The first row displays the proportion of households with one earner, two earners or three or
more earners (during the previous month). The next three rows report the proportion of current income stemming from regular
sources (as opposed to occasional) for each subgroup by number of earners. Note that “more than 75% regular” excludes 75%
and 100%. The final three rows show the relative frequency of the most important types of (negative) shocks faced by households
during the previous year, again for each category of number of earners. Note that around 2.5% of households report having suffered
both health- and non health-related shocks, which implies that the absolute frequencies for these two categories are slightly larger
than reported above, for each category of number of earners.

of schooling. Income is predominantly earned in the form of labour income, where most individuals tend
to be informally employed (93%). About half of the working individuals in the sample work in agriculture,
while others, for example, work as domestic servants. The survey design and context are described in detail
in Attanasio et al. (2012).14

In Table 4.2, as for the Indian data, we provide descriptive statistics of time-varying characteristics re-
lated to income sources and shocks. We divide households into three categories according to the number of
household members who report a source of income during the previous month: one, two or three or more
members, which account for 38%, 41.3% and 20.7% of the sample, respectively. We also report the propor-
tion of income that comes from regular sources, defined as the share of labor and non-labor income in total
household income, excluding occasional labour, monthly CCT subsidies (if any) and transfers. Households
with only one working member tend to receive most of their income from regular sources (77.5%), while
those with three or more providers are the least likely to do so (34.4%). Income shocks are evenly distributed
across these earner categories, similar to the pattern observed in India.

Elicitation of expectations was conducted in a similar fashion to the survey in India; see again Section
4.2 for a description of the elicitation approach. Figure 4.5 summarizes the distribution of elicited probabil-
ities by threshold and survey round. Figure 4.6 displays a high positive correlation between the midpoint of
the reported probability distribution and current income in both survey rounds. This relationship is some-
what weaker than in the Indian context, in line with our results on risk and persistence and the fact that
expectations here refer to a much shorter time span.

Since the subjective expectations data have not been used before, we provide a detailed analysis and val-
idation in Appendix C.1.2. Overall, the elicitation of subjective expectations was less precise in the Colom-
bian data. We find a substantially larger degree of logical response errors, although still within reasonable

14The baseline evaluation report can be accessed at https://ifs.org.uk/publications/baseline-report-evaluation-familias-en-
accion.

https://ifs.org.uk/publications/baseline-report-evaluation-familias-en-accion
https://ifs.org.uk/publications/baseline-report-evaluation-familias-en-accion
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FIGURE 4.5. Colombia: frequencies by threshold
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Note. The figure displays subjective probability frequency plots for each threshold and survey round, as shown in the legend.
Probabilities are rounded to the nearest tenth.

FIGURE 4.6. Colombia: current income and reported midpoint
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Note. The solid black corresponds to the linear regression fit.

ranges (for instance, around 4% of households report distributions that violate monotonicity). Validation
and sample selection leave us with a significantly reduced balanced panel sample of N = 2, 230 households.
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A detailed step-by-step analysis is reported in Appendix C.1.2. Tables C.1.5 and C.1.6 show that these deci-
sions do not imply strong sample selection (at least, based on observable characteristics). Households in the
final sample tend to have fewer adults, and household heads are slightly younger (by around a year, on aver-
age). They are also slightly less likely to have experienced health or other types of shocks, but are generally
very comparable in terms of household composition, income, income sources and education level.

4.5 Results

In this section, we report the results we obtain for both countries when estimating various specifications
of the income process. We start with a linear AR(1) process with time effects and consider versions with
and without fixed effects, and then augment it with a number of state variables. When these are interacted
with current income, persistence is allowed to be heterogeneous in the cross-section. Finally, we consider
nonlinear processes of the type introduced in section 4.3.4. In such models, all the features of the distribution
vary across units and over time.

4.5.1 Linear models

In what follows, we present the estimates of the parameters of the linear process (4.6), which are obtained
from least-squares estimates of the reduced-form parameters in equation (4.7), using the one-to-one map-
ping between the two sets of parameters.

India

We begin by reporting estimates using the Indian data in Table 4.3. The first column contains the estimates
of the model without fixed effects, while the second contains the estimates of the model with fixed effects. In
addition to the parameters of the model (the persistence parameter ρ, the standard deviation of innovations
σ , the residual variance σ2

ε and, in the case of the fixed-effect model, the variance of the individual and village-
level fixed effects σ2

η and σ2
η,village), for comparability with some of the results we report below, we also include

the differences between the 75th and 25th quantiles and between the 90th and 10th quantiles implied by these
estimates.

In the model without fixed effects, ρ is close to one and estimated very precisely. The standard devi-
ation of the innovation to the (log) income process is substantive at 0.56, reflected in large values of the
interquantile ranges reported. This is a measure of risk, which is identified from the association between the
self-reported range of variation of future income and elicited probabilities. The residual variance is estimated
at 1.24, which is sizable.

The introduction of fixed effects reduces the degree of persistence from 0.97 to 0.93, which is now sig-
nificantly different from unity. Fixed effects also play an important role in assessing risk, as the standard error
of the income process innovations is reduced from 0.56 to 0.31. The variance of the individual fixed effect
at 0.22 (measured as ηi) is one and a half times the variance of the village level fixed effect. These results are
surprisingly comparable to those used in standard macro calibrations of the income process based on realized
earnings (see, for example, Kaplan and Violante (2010) or Alvarez and Arellano (2022)).
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The residual variance is somewhat smaller after fixed effects are introduced, but remains substantial. In
particular, it is too large for the residual to be interpreted solely as measurement error in elicited probabilities.
This impression is reinforced by the fact that the residual variance in a regression of ℓjit on rjit with period
and unit specific effects is 0.37. Such calculation can be regarded as a lower bound for the measurement er-
ror component of the residual in a separable model and implies that a subjective probability of 0.5 would be
elicited in the survey with a standard error of one percentage point. The likely presence of additional sources
of residual variation provides further motivation for examining the roles of other state variables, nonlinear-
ities, and neglected heterogeneity. However, a variance decomposition with period and unit effects is only
suggestive because it preserves the separability between rjit and state variables, while our flexible models em-
phasize the interactions between the two.

No FE FE

ρ 0.97 0.93
(0.94, 1.00) (0.90, 0.96)

σ 0.56 0.31
(0.51, 0.60) (0.29, 0.33)

IQR0.75 1.22 0.69
(1.13, 1.33) (0.64, 0.74)

IQR0.90 2.44 1.38
(2.25, 2.65) (1.29, 1.47)

σ2
η 0.22

(0.18, 0.27)
σ2
η village 0.14

(0.14, 0.19)
σ2
ε 1.24 1.14

(1.21, 1.27) (1.10, 1.18)
Note. The table reports results for the linear model in (4.7) using the data for India, without
fixed effects (and a common intercept) and with fixed effects. We also include year (survey round)
dummies in both cases. In parenthesis we report 90% block bootstrap CI (1000 repetitions).

TABLE 4.3. India — linear model

Colombia

In Table 4.4, we report the results obtained by estimating the same two versions of the linear model (with
and without fixed effects) reported in Table 4.3 for India. In the model without fixed effects, the parameter
ρ is estimated to be 0.71. Remarkably, the standard deviation of income innovations is very large at 0.98.
It should be remembered that in the Colombian data, future income refers to next month rather than next

year. Annual income is likely to be less volatile than monthly income, although the two economies might
be very different. The residual variance is somewhat larger in the Colombian data than in the Indian data,
although of comparable magnitude, so the previous comments about the size of the residuals apply here as
well.

When adding fixed effects, the estimated ρ is much smaller at 0.5 and the standard deviation of innova-
tions is reduced from 0.98 to 0.65. Moreover, the variance of the individual fixed effect is much larger than
in the Indian sample and, similar to India, much larger than the variance of the village component of the
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No FE FE
ρ 0.71 0.50

(0.67, 0.74) (0.46, 0.55)
σ 0.98 0.65

(0.93, 1.03) (0.63, 0.67)
IQR0.75 2.16 1.43

(2.05, 2.26) (1.38, 1.48)
IQR0.90 4.31 2.86

(4.10, 4.52) (2.75, 2.96)
σ2
η 0.48

(0.44, 0.52)
σ2
η village 0.12

(0.12, 0.17)
σ2
ε 1.46 1.09

(1.42, 1.49) (1.05, 1.12)
Note. The table reports results for the linear model in (4.7) using the data for Colombia, without
fixed effects (and a common intercept) and with fixed effects. We also include year (survey round)
and month (interview) dummies in both cases. In parenthesis we report 90% block bootstrap CI
(1000 repetitions).

TABLE 4.4. Colombia — linear model

fixed effect (four times). Taken together, these results suggest higher risks and lower persistence in Colom-
bian monthly earnings compared to Indian annual earnings, and greater unobserved heterogeneity in the
Colombian data.

4.5.2 Linear models with additional state variables

We now augment the linear model with time-varying characteristics xit, along the lines of Subsection 4.3.3
and equation (4.8). When interacted with current income, we allow for differential subjective persistence
along these characteristics. We include sources of income and shocks experienced in the current year as
dimensions of xit, as described in Tables 4.1 and 4.2 for India and Colombia, respectively. We only report
specifications that include fixed effects.

India

The results obtained estimating equation (4.8) on the India data are reported in Table 4.5 when introducing
indicators of type and number of income sources and in Table 4.6 when interacting the number of sources
with types of shocks.

These results show that persistence is not greatly affected by the presence of additional variables, even
when interacted with current income. Households with different sources of income, and households who
have in the past year experienced either a health, agricultural or other shock15 all have subjective persistence
around the 0.90 mark. Having said that, however, households with no farm activities have lower levels of

15"Sources" in the India data refer to the number of activities that the household generates income from (farming, agricultural
labour, relief work, crafts, trading etc.), health shocks refer to illness or death of a household member, agricultural shocks include
crop failure due to disease or floods, and other shocks include events such as job loss or being the victim of crime.
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persistence.
Remarkably, the introduction of this additional variables does not affect much the variability of the

income innovations or of the fixed effects. Similar considerations apply to the residual variance. The conclu-
sion we draw from these tables is that, although marginally significant, the introduction of the interactions
with the observable considered, it does not have a large effect on the estimated risk and persistence of the
income process.

ρ ≤2 sources 3 sources 4+ sources
0% farm 0.87 0.90 0.83

(0.83, 0.92) (0.85, 0.95) (0.76, 0.90)
50% farm 0.91 0.94 0.87

(0.87, 0.95) (0.90, 0.98) (0.80, 0.93)
75% farm 0.93 0.96 0.89

(0.88, 0.98) (0.92, 1.01) (0.82, 0.96)

σ 0.30
(0.28, 0.32)

IQR0.90 1.33
(1.24, 1.41)

σ2
η 0.23

(0.19, 0.28)
σ2
η village 0.13

(0.13, 0.18)
σ2
ε 1.12

(1.07, 1.16)
Note. The table reports results for India for the linear model (4.7) in augmented with household-level characteristics, along the
lines of (4.8). “Farm” refers to the proportion of current income obtained from farming-related activities; see Table 4.1 for a full
description of these variables. We also include year (survey round) dummies. In parenthesis we report 90% block bootstrap CI
(1000 repetitions).

TABLE 4.5. India — linear model augmented with household characteristics (% of income from farming)
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ρ ≤2 sources 3 sources 4+ sources
No shock 0.87 0.91 0.83

(0.79, 0.95) (0.84, 0.99) (0.74, 0.93)
Health 0.92 0.97 0.89

(0.86, 0.98) (0.91, 1.04) (0.81, 0.97)
Agricultural 0.90 0.97 0.87

(0.86, 0.95) (0.92, 1.01) (0.81, 0.94)
Other 0.99 1.04 0.97

(0.88, 1.09) (0.93, 1.14) (0.84, 1.08)

σ 0.30
(0.28, 0.32)

IQR0.90 1.34
(1.23, 1.42)

σ2
η 0.25

(0.22, 0.32)
σ2
η village 0.15

(0.15, 0.21)
σ2
ε 1.13

(1.08, 1.16)
Note. The table reports results for India for the linear model in (4.7) augmented with household-level characteristics, along the
lines of (4.8). See Table 4.1 for a full description of these variables. We also include year (survey round) dummies. In parenthesis
we report 90% block bootstrap CI (1000 repetitions).

TABLE 4.6. India — linear model augmented with household characteristics (shocks and income sources)

Colombia

In the Colombian data, we note more substantial differences in persistence according to the number of
sources of income than in India. We observe that for three or more working members there is higher persis-
tence. This seems to be a case of income diversification, which makes a lot of sense for Colombia given that
predictions are one-month ahead. This is particularly true for households with a regular (non-occasional)
stream of income, as can be seen in Table 4.7.

It is noteworthy that the introduction of the additional controls interacted with income does not make
much difference to the size of the uncertainty, which remains more or less at the same level (0.64) and to the
variability of both individual and village level fixed effects. The stability of these coefficients and the limited
variability of the persistence estimates are an indication of the fact that these observables play a limited role
in this model.

The most noticeable difference between these results and those obtained for India is the size of the per-
sistence coefficient. In the case of Colombia, although some variability is observed by income sources, per-
sistence is never larger than 0.65, while in India is never below 0.83. We also notice that the idiosyncratic
variability of fixed effects is considerably larger in Colombia, being almost twice as large as in India. Instead,
the variability of village level fixed effects is roughly similar (around 0.12). An implication of this finding is
that the variability across villages accounts for a larger fraction of the fixed effects variability in India.
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ρ 1 earner 2 earners 3+ earners
0% regular 0.34 0.36 0.48

(0.21, 0.48) (0.24, 0.47) (0.34, 0.63)
75% regular 0.51 0.52 0.61

(0.43, 0.58) (0.43, 0.59) (0.51, 0.71)
100% regular 0.56 0.57 0.65

(0.49, 0.63) (0.48, 0.66) (0.55, 0.76)

σ 0.64
(0.62, 0.67)

IQR0.90 2.83
(2.72, 2.92)

σ2
η 0.48

(0.45, 0.52)
σ2
η village 0.11

(0.12, 0.16)
σ2
ε 1.08

(1.04, 1.11)
Note. The table reports results for Colombia for the linear model in (4.7) augmented with household-level characteristics, along
the lines of (4.8). See Table 4.2 for a full description of these variables. We also include year (survey round) and month (interview)
dummies. TheR2 are adjusted for the presence of fixed effects. In parenthesis we report 90% block bootstrap CI (1000 repetitions).

TABLE 4.7. Colombia — linear model augmented with household characteristics (proportion of regular income and
income sources)

ρ 1 earner 2 earners 3+ earners
No shock 0.54 0.55 0.58

(0.47, 0.62) (0.47, 0.63) (0.48, 0.68)
Health 0.64 0.65 0.67

(0.50, 0.77) (0.51, 0.79) (0.53, 0.81)
Other 0.44 0.46 0.48

(0.32, 0.56) (0.33, 0.58) (0.34, 0.61)

σ 0.65
(0.62, 0.67)

IQR0.90 2.84
(2.73, 2.93)

σ2
η 0.48

(0.45, 0.53)
σ2
η village 0.11

(0.12, 0.16)
σ2
ε 1.09

(1.04, 1.11)
Note. The table reports results for Colombia for the linear model (4.7) in augmented with household-level characteristics, along
the lines of (4.8). See Table 4.2 for a full description of these variables. We also include year (survey round) and month (interview)
dummies. In parenthesis we report 90% block bootstrap CI (1000 repetitions).

TABLE 4.8. Colombia — linear model augmented with household characteristics (income shocks and income sources)
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4.5.3 Nonlinear models

We now turn to the central empirical results of the chapter. In this section, we discuss the estimation of the
nonlinear model with additive fixed effects:

ℓjit = β†0(sjit) + β
†
1 (sjit)ψ

(
yit

)
+ ηi + εjit , (4.20)

which corresponds to equation (4.16) with β†2(·) = 1. We report results for the most parsimonious specifi-
cation that would still allow for nonlinear persistence and skewness — that is, we choose L = 3 for β†0(·)
and β†1 (·) (cubic splines with two boundary knots and one intermediate knot) and ψ (·) of order 1 (cur-
rent income enters in log levels, but since sjit = rjit − yi,t quadratic income terms are also involved). This
configuration is in what follows referred to as the baseline specification for the nonlinear model.

We experimented with higher values of L and higher order polynomials. While for L > 3 we obtained
qualitatively similar results, as long as the position of the knots was judiciously chosen, the use of higher-
order ψ (·) terms required substantial penalization to avoid unstable results. We also experimented with
nonlinear models involving additional state variables, but since the interaction terms did not contribute
much, in line with what we saw for linear models, we do not present them here.

In our data, identification of nonlinear persistence comes directly from the association between current
income and the shape of the distribution of subjective probabilities of future income, net of fixed effects. In
particular, to obtain the results we present, it is key to consider distributional models that are flexible enough
to allow for conditional skewness that may change with current income and unobserved heterogeneity.

Overall, the linear autoregressive model is soundly rejected on both the Indian and Colombian data.
Moreover, similar patterns of heterogeneous risks and nonlinear persistence emerge in the two data sets.
This is particularly remarkable in view of the differences between the two surveys (annual vs monthly) and
the characteristics of their underlying populations.

India

Table 4.9 presents the results obtained in estimating the nonlinear model with additive effects on the In-
dian data. Firstly, with regard to risk, it is noticeable that dispersion risk decreases with current income (in-
terquantile range measures for the 90th income percentile are two-thirds of those for the 10th percentile),
while skewness risk increases moderately. That is, the rich have less dispersion risk but more skewness risk
than the poor.

Turning to persistence, we observe the presence of nonlinear persistence, which depends on both the
percentile of current income and the rank of the quantile shock to next-period’s income. Persistence is close
to one for high-income households throughout, but only when hit by a bad shock for low-income house-
holds. When a good shock hits a low-income household, persistence is much lower. This pattern, which is
depicted in Figure 4.7, features prominently in our results and is only partially consistent with the nonlinear
persistence reported in Arellano et al. (2017), who found reduced persistence not only at the bottom of the
income distribution (with good shocks) but also at the top of the income distribution (with bad shocks).
Those differences do not necessarily imply a contradiction between results based on subjective expectations
and those based on realized incomes because the populations of reference in the two studies are very different.
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yp10 yp50 yp90

IQR0.75 0.79 0.60 0.52
(0.72, 0.90) (0.54, 0.63) (0.45, 0.55)

IQR0.90 1.61 1.23 1.05
(1.48, 1.85) (1.15, 1.31) (0.93, 1.14)

SK0.90 −0.02 −0.10 −0.14
(−0.15, 0.06) (−0.20,−0.04) (−0.28,−0.04)

ρτ0.25 0.96 1.02 1.05
(0.92, 1.05) (0.99, 1.06) (1.00, 1.08)

ρτ0.50 0.79 0.96 1.01
(0.72, 0.86) (0.92, 0.98) (0.97, 1.03)

ρτ0.75 0.58 0.86 0.97
(0.38, 0.71) (0.82, 0.89) (0.91, 0.99)

σ2
η 0.23

(0.19, 0.28)
σ2
η village 0.14

(0.13, 0.19)
σ2
ε 1.11

(1.06, 1.14)
Note. The table reports results for India for the flexible model with additive fixed effects in (4.20). We also include year (survey
round) dummies. In parenthesis we report 90% block bootstrap CI (1000 repetitions).

TABLE 4.9. India — flexible model (additive fixed effects)

In our developing country databases all households are poor by comparison to PSID households.
An economic implication of the nonlinear income process comes from the fact that a positive shock for

lower-income households reduces the persistence of the past and is therefore beneficial for those households
in terms of expected future income. Relative to the predictions of a linear income process, this asymmetry
will induce lower saving and higher consumption at younger ages for self-insured low-income households.
However, for higher-income households, given the estimated process, the opposite effect (associated to neg-
ative shocks) would not be expected to happen.

The nonlinear persistence that we find among the poorest households is consistent with a poverty trap
interpretation. When income is too low it is difficult to escape poverty, but a large positive shock can weaken
the weight of the past history and get the household (persistently) off the hook at a higher income level.16

We find it quite interesting that this kind of poverty trap dynamics seems to be reflected in the subjective
income expectations of poor households.

All these summary measures are computed for the model’s probability distributions evaluated at the
median value of the fixed effects. We extend the analysis to other percentiles (corresponding to a normal
distribution with the estimated variance of the fixed effects) in Figure C.3.1 (see Appendix C.3) and obtain
a similar pattern of nonlinear persistence together with an additional pattern of unobserved heterogeneity.
Specifically, as the selected percentile of the effects increases, overall persistence increases and the amount of

16See Banerjee, Duflo, Goldberg, Karlan, Osei, Parienté, Shapiro, Thuysbaert, and Udry (2015) for evidence on how a multi-
faceted program can help the extreme poor to persistently increase their income; and Genicot and Ray (2017) for an aspirations-
based theory of poverty traps and references to the earlier theoretical literature.
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Note. The figure reports estimates of nonlinear persistence for India for the flexible model with additive fixed effects in (4.20).
Specifications also include year (survey round) dummies. See Figure C.3.3 for pointwise confidence bands.

FIGURE 4.7. India — flexible model, nonlinear persistence (additive fixed effects)

persistence for different shocks becomes more compressed, with a flatter gradient along current income for
large shocks.

Probability density functions for India. Figure 4.8 shows estimated conditional probability density
functions (pdf s) at the 10th, 50th and 90th percentiles of current income for the baseline model. They are
calculated by numerical differentiation of the corresponding estimated cumulative probabilities. Estimated
cdf s with or without rearrangement coincide since there are no instances of non-monotonicities in the base-
line specification. Figure 4.8 also shows block-bootstrap point-wise confidence bands and Normal pdf s with
the same empirical mean and variance for comparisons.

As expected, the predictive subjective density for poorer households is shifted to the left relative to that
of richer households, indicating that at any given reference level for future income, poorer households tend
to assign a higher probability to their future income falling below that level. Moreover, consistent with the
results in Table 4.9, subjective predictive densities tend to be more symmetric and are noticeably more dis-
persed for the poor. Beyond non-normality, the figure also portrays more pronounced differences between
the current rich and the current poor in terms of relatively bad and relatively good outcomes. These differ-
ences are suggestive of nonlinear persistence,17 which is more relevant for the currently poor, consistently
with the patterns we find in Table 4.9.

17Recall that, according to the chain rule in equation (4.15), nonlinear persistence can be obtained as the derivative of the cdf
with respect to y relative to the derivative of the cdf with respect to r.
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Note. The figure shows estimated pdf s at the 10th, 50th and 90th percentiles of current income for India, calculated by numerical differentiation on
the estimated (conditional) cumulative probabilities. Shared areas are 90% pointwise confidence bands using block bootstrap (1000 repetitions).
Dotted lines correspond to Normal pdf s with the same mean and variance as the empirical pdfs of the same color. The range of variation is
standardized (future) log income, see Appendix C.2.4.

FIGURE 4.8. India — flexible model, probability density function (additive fixed effects)

Colombia

Table 4.10 presents the results for the nonlinear model with additive effects on the Colombian data. Similar
to India, we observe dispersion and skewness decreasing with current income (decreasing dispersion risk
and increasing skewness risk). However, while in India we found no skewness at the bottom of the income
distribution and negative skewness at the top, in Colombia we find positive skewness at the bottom and no
skewness at the top.

Regarding persistence, although at lower levels than in India (similar to the linear model), we find the
same pattern of nonlinearities, with persistence decreasing with relatively good shocks for low income house-
holds but not for high income households (Table 4.10 and Figure 4.9). The impact of unobserved hetero-
geneity on persistence is also similar to the one for India; see Figure C.3.2 in Appendix C.3.

Probability density functions for Colombia. We also observe marked departures from normality in
Colombia according to Figure 4.10, which depicts estimated pdf s together with Normal distribution fits.
The estimated densities are consistent with the pattern in Table 4.10 of decreasing dispersion risk as we move
along the income gradient and feature prominent deviations from normality, more so for poorer households.
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yp10 yp50 yp90

IQR0.75 1.48 1.34 1.28
(1.39, 1.58) (1.26, 1.40) (1.21, 1.36)

IQR0.90 2.97 2.75 2.63
(2.80, 3.13) (2.63, 2.86) (2.50, 2.77)

SK0.90 0.13 0.08 0.04
(0.05, 0.19) (0.03, 0.12) (−0.01, 0.08)

ρτ0.25 0.59 0.60 0.60
(0.54, 0.65) (0.53, 0.67) (0.48, 0.69)

ρτ0.50 0.52 0.59 0.60
(0.42, 0.61) (0.54, 0.64) (0.52, 0.66)

ρτ0.75 0.39 0.48 0.56
(0.30, 0.47) (0.41, 0.54) (0.50, 0.62)

σ2
η 0.47

(0.44, 0.52)
σ2
η village 0.12

(0.12, 0.17)
σ2
ε 1.09

(1.05, 1.12)
Note. The table reports results for Colombia for the flexible model with additive fixed effects in (4.20). We also include year (survey
round) and month (interview) dummies. In parenthesis we report 90% block bootstrap CI (1000 repetitions).

TABLE 4.10. Colombia — flexible model (additive fixed effects)

Note. The figure reports estimates of nonlinear persistence for Colombia for the flexible model with additive fixed effects in (4.20).
Specifications also include year (survey round) dummies. See Figure C.3.4 for pointwise confidence bands.

FIGURE 4.9. Colombia — flexible model, nonlinear persistence (additive fixed effects)
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Note. The figure shows estimated pdf s at the 10th, 50th and 90th percentiles of current income for Colombia, calculated by numerical differen-
tiation on the estimated (conditional) cumulative probabilities. Shared areas are 90% pointwise confidence bands using block bootstrap (1000
repetitions). Dotted lines correspond to Normal pdf s with the same mean and variance as the empirical pdfs of the same color. The range of
variation is standardized (future) log income, see Appendix C.2.4.

FIGURE 4.10. Colombia — flexible model, probability density function (additive fixed effects)
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4.5.4 Generalizing heterogeneity patterns: interacted fixed effects

In this section, we discuss the estimation of the nonlinear model (4.16) with interacted fixed effects, in which
β†2(sjit) is allowed to depend on sjit. In these models log odd ratios can vary differentially with fixed effects and
therefore allow for a greater distributional role of unobserved heterogeneity in accounting for nonlinearities.

In line with the nonlinear estimates with additive effects, we report results for a parsimonious specifi-
cation where we choose L = 3 for β†0(·) and β†1 (·), L = 2 for β†2(·) and ψ (·) of order 1. Thus, the model
contains a total of 6 parameters — two in the intercept function, three in the interactions with current
income, and one in the multiplicative term interacted with the fixed effect. We resort to the linear TSLS
estimator introduced in Section 4.3.5 (which does not impose the restrictions in equation (4.19)) using a full
set of first-stage interaction terms.18

Tables 4.11 and 4.12 report the results for India and Colombia, respectively. Starting with the results for
India, we observe some noticeable differences relative to the nonlinear additive model estimates in Table 4.9.
First, dispersion risk is now smaller overall, although it is still decreasing with current income. Thus, it ap-
pears that a larger fraction of the spread in the subjective probability distributions is now accounted for by
unobserved heterogeneity as opposed to risk. Secondly, negative skewness is now more prominent overall,
while the increase in skewness risk with current income is much reduced. Finally, although the pattern of
nonlinear persistence remains the same, there is a smaller reduction in persistence at the bottom of the in-
come distribution in the presence of a positive shock. The results for Colombia in Table 4.12 tell a similar
story relative to those in Table 4.10 for the nonlinear additive model.

State dependence versus unobserved heterogeneity. We have found that state dependence and unob-
served heterogeneity compete as sources to explain persistence, not only in linear models (the comparison
between columns 1 and 2 in tables 4.3 and 4.4), but also in the case of nonlinear persistence when fixed effects
are allowed a flexible distributional role.19 Our results show that both state dependence and unobserved het-
erogeneity matter, linearly and nonlinearly, and illustrate how to quantify the relative contributions of each
one to different features of a distributional income process estimated from subjective expectations data.

18Remember that we also include year indicators in all specifications, and that the TSLS estimator on the transformed equation
(4.19) requires us to account for additional “included” regressors (even if the nonlinear restrictions are not imposed). In the case
of Colombia, relative to the nonlinear estimates with additive fixed effects, we excluded survey (month) indicators, which would
increase the regressor set by 16 additional coefficients and tend to introduce instability in the estimates.

19Using a different model for realized outcomes, Almuzara (2020) considers a related problem of distinguishing between non-
linear state dependence and (variance) unobserved heterogeneity. He shows that a fixed effect in the variance of transitory shocks
may give rise to spurious nonlinear dynamics.
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yp10 yp50 yp90

IQR0.75 0.56 0.46 0.42
(0.49, 0.79) (0.39, 0.56) (0.33, 0.48)

IQR0.90 1.31 1.04 0.90
(1.04, 3.32) (0.83, 1.50) (0.70, 1.12)

SK0.90 −0.25 −0.29 −0.29
(−0.70,−0.04) (−0.50,−0.11) (−0.45,−0.12)

ρτ0.25 1.00 1.05 1.07
(0.93, 1.11) (1.01, 1.10) (1.03, 1.10)

ρτ0.50 0.93 1.01 1.04
(0.83, 0.97) (0.95, 1.03) (0.99, 1.06)

ρτ0.75 0.82 0.97 1.02
(0.63, 0.88) (0.89, 0.99) (0.95, 1.04)

σ2
η 0.49

(0.38, 0.63)
σ2
η village 0.19

(0.18, 0.29)
σ2
ε 1.10

(1.01, 1.26)
Note. The table reports results for India for the flexible model in (4.16). We also include year (survey round) dummies. In paren-
thesis we report 90% block bootstrap CI (1000 repetitions).

TABLE 4.11. India — flexible model (multiplicative fixed effects)

yp10 yp50 yp90

IQR0.75 1.91 1.62 1.52
(1.22, 4.19) (1.11, 3.00) (1.10, 2.41)

IQR0.90 3.85 3.57 3.48
(2.49, 8.13) (2.39, 6.74) (2.37, 6.18)

SK0.90 0.37 0.27 0.16
(0.21, 0.56) (0.13, 0.50) (0.05, 0.37)

ρτ0.25 0.59 0.49 0.38
(0.46, 0.69) (0.26, 0.65) (−0.07, 0.62)

ρτ0.50 0.50 0.58 0.49
(−0.31, 0.68) (0.41, 0.68) (0.20, 0.65)

ρτ0.75 0.19 0.26 0.39
(−1.24, 0.53) (−0.72, 0.57) (−0.39, 0.63)

σ2
η 0.47

(0.41, 0.58)
σ2
η village 0.11

(0.11, 0.17)
σ2
ε 1.10

(1.05, 1.23)
Note. The table reports results for Colombia for the flexible model in (4.16). We also include year (survey round) dummies. In
parenthesis we report 90% block bootstrap CI (1000 repetitions).

TABLE 4.12. Colombia — flexible model (multiplicative fixed effects)
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CONCLUSIONS

In this final chapter, I revisit the contributions of the thesis and reflect on the challenges and opportunities
afforded by modern, rich microdata environments.

Possibilities are wide-ranging, and include a better understanding of the transmission of shocks and the
nature of heterogeneity, sharpened inference in contexts where a substantial fraction of the population of
interest is observed, and incorporating into the econometric toolbox data on hypothetical scenarios and
subjective expectations that directly inform us of economic agents’ beliefs and perceptions.

Challenges are ubiquitous as well, and often require the development of new econometric approaches.
Non-standard asymptotics are one recurrent theme throughout this thesis, incorporating key ingredients
of the setup — such as additional information about the sampling process or embeddings regulating the
signal-to-noise value of different shocks — in order to provide better approximations. Another is methods
to handle new types of dependent variables, such as subjective probabilistic assessments of future outcomes.

Another central message is the imperative to explicitly incorporate and account for microeconomic het-
erogeneity in making progress towards tackling these challenges. It modulates the extent to which finite-
populations inference makes a practical difference in applications, motivates the use of microdata to answer
macro questions, plays a crucial role in devising robust inference procedures in the presence of aggregate
shocks, and permeates every aspect of modelling income processes with subjective expectations data. This
thesis thus emphasizes the importance of keeping heterogeneity at the forefront of econometric research.

At a higher level of generality, a further lesson from this thesis is the need for econometrics to keep devel-
oping in continuous dialogue with empirical research. All methodological questions explored here emerge
in response to pressing empirical needs. At the same time, the thesis illustrates the enduring versatility of
panel data econometrics, which remains more relevant than ever. Many of the tools employed here draw
from well-established techniques for random coefficient models or time series methods for panels with a
short or moderate time dimension.

101
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Finite populations

Finite population problems, where the sample at hand is a relevant fraction of the population of interest,
are ubiquitous in empirical work. Despite its salience, the standard treatments of inference in finite pop-
ulations assume that the features of interest are observable upon sampling, which limits their adoption in
applications.

In Chapter 2, I proposed new methods to assess estimation uncertainty in problems where a finite pop-
ulation coexists with a measurement problem. I introduced finite-population variance estimators that guar-
antee non-conservative inference and applied these methods to two different empirical applications: on pre-
dicting police violence and on studying firm misallocation with census data. Finite-population inference
allows for a systematic approach to uncertainty quantification in setups where uncertainty has been previ-
ously understood in different ways and leads to large gains in precision in setups where routine practice has
been to report standard errors as if the sample were negligible relative to the population.

I also leave some interesting dimensions for future work. Extending the finite-populations framework
to a “many measurements” context presents no conceptual difficulty. If anything, some tasks are simplified:
whereas weak dependence remains a key assumption, more agnostic approaches to dependence are possible,
as those in the time series tradition. Having access to many measurements also allows extensions to more
general nonlinear models and facilitates constructing Finite Population Corrections. Further formalizing
these ideas also seems a promising direction for future work. Similarly, the framework in this chapter can be
extended to more general persistent–transitory measurement models and dynamic panel data problems in
short panels.

Macro shocks

The use of micro data to answer macro questions offers an exciting avenue to study how agents respond
to economy-wide policies. Yet, this is not without difficulties. In Chapter 3, we proposed a disciplined ap-
proach to uncertainty quantification when both aggregate and idiosyncratic shocks coexist and interest is in
parameters identified solely by macro shocks. One such scenario is the estimation of impulse responses to
macro shocks when rich micro data and a measurement of the shock of interest are available. Despite the
complex environment, inference is simple and robust: it involves lag augmentation and clustering at the time
level, and is valid regardless of the relative signal of macro shocks in the microdata.

Our basic framework generalizes beyond the empirical applications we have focused on. Other, related
literatures where identification comes from randomness in group level shocks include regional-exposure and
shift-share designs. In fact, impulse responses are sometimes an object of interest too — see, for instance,
the literature on cross-sectional fiscal multipliers (Chodorow-Reich, 2019).

Finally, we leave some interesting dimensions for future research. Quantifying signal-to-noise (perhaps
a lower bound) seems relevant in settings where uniform inference is not possible; we expect that these issues
become more salient as macroeconomists embrace the use of microdata to sharpen identification (Nakamura
and Steinsson, 2018). On a different note, strong persistence of micro-level shocks is likely a feature of many
datasets, and this is only captured in an indirect sense by our signal-to-noise device. Formalizing the idea of
(possibly heterogeneous) non-stationarities along these lines seems promising and full of empirical content.
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Finally, extensions to simultaneous inference over impulse response horizons could be made building on the
techniques in Jordà (2009) and Montiel Olea and Plagborg-Møller (2019).

Subjective expectations

In Chapter 4, we developed an econometric framework for modeling income risk and heterogeneity from
the responses to subjective expectation questions of Indian and Colombian households. One main conclu-
sion is that linear income processes are soundly rejected in both datasets. Subjective income distributions
feature heteroskedasticity, conditional skewness, and nonlinear persistence. We found a negative association
between conditional dispersion and current income, and between conditional skewness and current income.
We also documented that persistence diminishes for poor households experiencing large positive shocks, but
not for richer households experiencing large negative shocks.

Unobserved heterogeneity matters and is composed of both household-specific and aggregate-level fac-
tors. We found that state dependence and unobserved heterogeneity compete as explanations of risk and
persistence, both linearly and nonlinearly, which emphasizes the importance of allowing for flexible distri-
butional unobserved heterogeneity to capture their relative contributions. Finally, we also explored whether
not only current income but also its sources matter for risk, thereby calling for a larger state space than is
common in the literature, and found only moderate evidence for the role of those additional state variables.

Taken together, our results suggest complex and heterogeneous patterns of transmission of income shocks
to consumption, involving precautionary dispersion and skewness motives, which depend on the household
position in the income distribution.
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APPENDIX A

APPENDIX TO CHAPTER 2

A.1 Proofs

The derivations here are a proof sketch of Propositions 2.1 and 2.2; the former is here integrated in the proof
of the latter.

Let λ denote a fixed column vector λ ≠ 0(k+p)×1 and let f̂ = N/n. The finite-population variance is
V̂(f̂ ) in (2.14). Throughout, we condition on V̂(f̂ ) ≥ 0 (in the matrix sense), which is a measure-one event
in the limit. At all times, we maintain Assumption 2.2 and the regularity conditions in Assumption A.1. For
(B) below we also invoke Assumption 2.1 and assume rankQ∗

i (δ) S(m) = m. Then, as n → ∞:

(A)
(
λ′V(f )λ

)−1/2 √
Nλ′

(
γ̂ − γn

) d−−−−−→ N(0, 1),

(B)
(
λ′V̂(f̂ )λ

)
/
(
λ′V(f )λ

) p
−−−−−→ 1.

where V(f ) is defined in (2.12). (A) and (B) are established in Lemmas A.1 and A.2, respectively. Since λ can
be chosen arbitrarily, (A) and the Cramér-Wold device imply Proposition 2.1. (A) and (B) imply that(

λ′V̂(f̂ )λ/N
)−1/2

λ′
(
γ̂ − γn

) d−−−−−→ N(0, 1),

and thus Proposition 2.2 follows.

Assumption A.1 (Regularity conditions for limit theorems). (Sketch) (i) (Identification) For large enough

n and for every γ̃ ∈ Γ, inf γ̃: | |γ̃−γn | |≥ε | |En
[
E

[
ψ (Yi,Wi, γ̃)

] ]
| | > 0, (ii) compact parameter space Γ ⊆ Rp+k,

(iii) square integrability and local Lipschitz conditions on ψ (Yi,Wi, γ̃) (regularity for Z-estimators; van der

Vaart (1998, Chapter 5)), (iv) existence of the appropriate limits of sequences, (v) (Moments) E
[
| |εi | |4

]
≤ C <

∞.

Lemma A.1 (Asymptotic normality of the rescaled estimation error). For an arbitrary column vector

λ ≠ 0(k+p)×1, (
λ′V(f )λ

)−1/2 √
Nλ′

(
γ̂ − γn

) d−−−−−→ N(0, 1).
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Proof. Under regularity conditions in Assumption A.1, the sample moment condition (2.9) admits an ex-
pansion

√
N

(
γ̂ − γn

)
= H−1

n n−1/2
n∑︁
i=1

Ri√︁
fn
ψ (Yi,Wi, γn) + op(1) ,

where we have also used that f̂ /fn
p

−−−−−→ 1 by Assumption (2.2). Now, note that from independent random

sampling and repeatedly using E
[
Ri

]
= fn,

Var

(
Ri√︁
fn
ψ (Yi,Wi, γn)

)
= E

[
ψ (Yi,Wi, γn)ψ (Yi,Wi, γn)′

]
− fnE

[
ψ (Yi,Wi, γn)

]
E

[
ψ (Yi,Wi, γn)

]′
,

(A.1)

and that averaging over the population yields Vψ,n(fn) in (2.11). For an arbitrary vectorλ ≠ 0(k+p)×1, {λ′ψ (Yi,Wi, γn)}n
is a row-wise independent triangular array and note that a′En

[
ψ (Yi,Wi, γn)

]
= 0 from (2.10). Asymptotic

normality of these averages follows by a Lyapunov-type condition; here we invoke Lemma A.1 in Abadie
et al. (2020). Letting Vψ (f ) = limn→∞ Vψ,n(fn), the asymptotic variance is given by λ′Vψ (f )λ, and the
result follows via the the Cramér-Wold device. □

Lemma A.2 (Consistency of the finite-population standard error). For an arbitrary column vector

λ ≠ 0(k+p)×1,

λ′V̂(f̂ )λ
λ′V(f )λ

p
−−−−−→ 1.

Proof. I focus on V̂ψ (f̂ ); the regularity conditions in Assumption A.1 immediately imply convergence of Ĥ
to its limits. We first characterize Vψ,n(fn). It is immediate from the expressions in (2.10), E

[
εiε

′
i

]
= Ωi and

the result in (A.1) that

Vψ,n(fn) =
©­«
En

[
Ψδδ,i

]
En

[
Ψδβ,i

]
En

[
Ψ

′
δβ,i

]
(1 − fn)En

[
Ψββ,i

]
+ fnEn

[
Ψ̃ββ,i

]ª®¬ .
where ψβ,i = h1(Wi, βn)

(
θi − h0

(
Wi; βn

) )
and

Ψδδ,i = A(Wi, δ)Qi (δ)ΩiQi (δ)A(Wi, δ)′,

Ψδβ,i = A(Wi, δ)Qi (δ)Ωi

(
g1

(
Xi; δ

)†
h1(Wi, βn)

)′
,

Ψββ,i = ψβ,iψ
′
β,i + h1(Wi, βn)g1

(
Xi; δ

)†
Ωi

(
g1

(
Xi; δ

)†
h1(Wi, βn)

)′︸                                                         ︷︷                                                         ︸
≡Ψ̃ββ,i

.

Next, define

Λi

(
fn

)
= vec−1

[ (
1 − fn

)
IT 2 + fnS(m)

(
Q∗
i (δ) S(m)

)†
Q∗
i (δ)

] (
u
(
Yi,Wi, γn

)
⊗ u

(
Yi,Wi, γn

) )
,
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and note that
u
(
Yi,Wi, γn

)
= g1

(
Xi; δ

) (
θi − h0

(
Wi; βn

) )
+ εi.

Furthermore, let g∗1
(
Xi; δ

)
= g1

(
Xi; δ

)
⊗ g1

(
Xi; δ

)
and note that using Assumption 2.1,

E
[
u
(
Yi,Wi, γn

)
⊗ u

(
Yi,Wi, γn

) ]
= g∗1

(
Xi; δ

) (
θi − h0

(
Wi; βn

) )2 + S(m)ωi

and Q∗
i (δ) E

[
u
(
Yi,Wi, γn

)
⊗ u

(
Yi,Wi, γn

) ]
= Q∗

i (δ) S(m)ωi. Further, using that Q∗
i (δ) S(m) has col-

umn rank, it follows that

E
[
Λi

(
fn

) ]
= (1 − fn)

[
g1

(
Xi; δ

) (
θi − h0

(
Wi; βn

) )2
g1

(
Xi; δ

)′ +Ωi

]
+ fnΩi.

The above shows unbiasedness ofΛi (fn) precisely for the term in the (finite-population) score. We can then
bound the variance of this term . One can proceed similarly for the residual term (using γ̂ instead of γn). Note
that Qi (δ)g1(Xi; δ) = 0T by construction, which shows why the finite-population variance is independent
of fn for common parameters despite the way it is contructed.

□

A.2 Additional derivations

A.2.1 Section 3.2: conservativeness of the cluster-robust variance

Here we show that E
[
V̂cluster

]
= V(0), where

V̂cluster
=

1
N (N − 1)

n∑︁
i=1

Ri

(
Ȳi − β̂

)2
.

In order to see this, it is helpful to rewrite the expression as

V̂cluster
=

1
N 2

n∑︁
i=1

RiȲ
2
i − 1

N 2(N − 1)

n∑︁
i=1

∑︁
j≠i

RiRjȲiȲj .

Taking expectations, we have

E
[
V̂cluster

]
=
En

[
E

[
Ȳ 2
i

] ]
N

−
1

n−1En

[∑
j≠i E

[
ȲiȲj

] ]
N

=
En

[
θ2
i

]
+ σ2/T

N
−

1
n−1En

[∑
j≠i θiθj

]
N

=

n
n−1En

[ (
θi − βn

)2
]

N
+ σ2/T

N
= V(0),

where we have used Assumption 2.S1 in the first line1 and Assumption 2.S2 in the second one.

1In particular, note that E
[
Ri

]
= N/n and E

[
RiRj

]
= N (N − 1)/n(n− 1) for j ≠ i for simple random sampling without

replacement.
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A.2.2 Finite-population inference for variances

Here I extend the results in Section 3.3 to cover βn = Varn
(
θi
)
= (n − 1)−1 ∑n

i=1
(
θi − θ̄n

)2 (where θ̄n is the
average θi in the population) in the context of the misallocation empirical application in Section 2.5.2 and
the measurement model in equation (2.20).

In particular, consider the variance estimator in equation (2.22), which we can extend to allow for weak
dependence as in Assumption 2.1:

β̂ =
1
N

n∑︁
i=1

RiT
−21′

T 2

[
IT 2 − S(m)

(
Q∗
i S(m)

)†
Q∗
i

]
Ŷ ∗
i =

1
N

n∑︁
i=1

RiT
−21′

T 2Ỹ
∗
i , (A.2)

with an obvious definition of Ỹ ∗
i . The motivation for this estimator can be traced back to equation (2.16) in

Remark 2.8, which recasts the measurement system for θi as a measurement system for θ2
i . A valid, conser-

vative (large-sample) variance estimator for β̂ is given by

V̂(0) = 1
N

n∑︁
i=1

Ri

(
T−21′

T 2Ỹ
∗
i − β̂

)2
.

Again through the lens of equation (2.16), it can be seen that the corresponding FPC is given by

FPC = lim
n→∞

En
[
(θi − θ̄n)4] − β2

n.

We can then leverage Remark 2.6, which shows that we can construct finite-population variance estimators
if we have access to a conservative estimator that is consistent for V(0) and a valid estimator of the FPC. A
candidate for the latter follows by noting that the FPC is also equal to (the limit of) κ4n + 2β2

n, where

κ4n(θi) = En
[
(θi − θ̄n)4] − 3En

[
(θi − θ̄n)2]2

.

Arellano and Bonhomme (2012, Appendix A) propose estimators of fourth-order cumulants. This approach
allows us to obtain valid finite-population estimators under the same notion of dependence over measure-
ments used in estimation, but we do need to restrict the higher-order dependence between measurement
errors and unobserved attributes; statistical independence would be a sufficient condition.2

A.3 Empirics: additional results

A.3.1 Additional results from Section 2.5.1

Tables A.1, A.2 and A.3 report finite-population confidence intervals for all results reported in the main
empirical section in Montiel-Olea et al. (2021) (section 5.2 of the paper). The entries correspond to the ten

2One way to operationalize independence is to define a probability distribution over θi and measurement errors in the limit
over sequences of growing finite populations and then impose these restrictions. Weaker conditions are possible imposing restric-
tions on limits of certain sums over the finite population. Similarly, independence can be relaxed to zero cross-cumulants up to
fourth order.
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largest police departments by population served. Table A.1 considers counterfactuals based on both observed
and unobserved determinants, Table A.2 considers only counterfactual unobserved determinants and Table
A.3 only observed ones.

TABLE A.1. Counterfactual homicides for 2013-2018: observed and unobserved determinants

(a) Conventional inference

Phoenix Las Vegas Dallas San Antonio Los Angeles Houston San Diego Chicago Philadelphia New York
Phoenix 93 [52,53] [33,47] [31,45] [34,40] [31,34] [31,32] [28,32] [21,30] [5,9]
Las Vegas [93,93] 51 [33,46] [31,44] [34,40] [31,33] [30,32] [28,32] [21,30] [5,9]
Dallas [68,97] [38,54] 33 [32,33] [27,37] [24,33] [23,33] [22,30] [21,23] [5,7]
San Antonio [76,109] [42,61] [37,39] 35 [30,41] [26,37] [25,37] [24,34] [23,25] [6,8]
Los Angeles [269,314] [150,176] [105,141] [99,135] 113 [95,106] [89,106] [86,98] [66,91] [17,27]
Houston [145,156] [81,87] [54,74] [50,71] [56,62] 51 [48,53] [46,50] [34,48] [9,14]
San Diego [79,83] [44,46] [28,40] [27,39] [29,35] [26,29] 26 [23,28] [18,26] [4,8]
Chicago [189,216] [105,121] [72,100] [68,96] [75,85] [67,73] [62,74] 63 [46,64] [12,19]
Philadelphia [89,130] [50,73] [44,47] [41,45] [36,50] [31,44] [30,44] [29,40] 28 [7,9]
New York [568,1013] [317,566] [270,371] [259,348] [237,375] [201,342] [189,342] [184,310] [175,236] 55
Totals [1689,2279] [942,1273] [753,882] [717,836] [699,848] [596,769] [562,776] [545,700] [481,567] [125,166]

(b) Finite-population inference

Phoenix Las Vegas Dallas San Antonio Los Angeles Houston San Diego Chicago Philadelphia New York
Phoenix 93 [52,53] [35,44] [34,42] [35,39] [32,33] [31,32] [28,32] [23,28] [6,8]
Las Vegas [93,93] 51 [35,43] [33,41] [35,39] [31,33] [30,32] [28,31] [23,28] [6,8]
Dallas [73,90] [41,50] 33 [32,33] [28,36] [25,31] [24,30] [23,29] [21,23] [5,7]
San Antonio [81,101] [45,56] [37,39] 35 [32,40] [28,35] [27,34] [25,33] [23,25] [6,7]
Los Angeles [274,307] [153,172] [107,137] [102,130] 113 [96,104] [91,104] [87,97] [69,88] [19,24]
Houston [146,155] [82,86] [56,71] [53,67] [57,62] 51 [48,53] [46,50] [36,45] [10,13]
San Diego [79,83] [44,46] [30,38] [29,36] [30,34] [27,29] 26 [24,28] [19,24] [5,7]
Chicago [190,214] [106,120] [74,96] [71,92] [75,84] [67,72] [62,73] 63 [49,61] [13,18]
Philadelphia [96,120] [54,67] [44,47] [41,45] [38,48] [33,42] [32,41] [30,38] 28 [7,9]
New York [643,870] [359,486] [281,355] [269,333] [261,332] [225,298] [214,292] [204,275] [180,228] 55
Totals [1791,2094] [1000,1170] [751,882] [716,833] [723,809] [626,717] [597,704] [565,667] [481,564] [134,155]

Note: Diagonal entries are observed lethal encounters (totalling 548 encounters). Off-diagonal entries are 90% confidence intervals
for counterfactual values of lethal encounters Ŷ ∗

t (i, j, zj) in equation (2.19), which replace characteristics of agency i in the rows
with that of agency j in the columns; see the text in Section 2.5.1 for additional details. In this case, we replace both observed and
unobserved determinants of police use of deadly force.
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TABLE A.2. Counterfactual homicides for 2013-2018: unobserved determinants

(a) Conventional inference

Phoenix Las Vegas Dallas Philadelphia San Diego Chicago Los Angeles Houston San Antonio New York
Phoenix 93 [64,70] [52,74] [46,78] [51,66] [48,64] [44,54] [44,53] [40,57] [13,25]
Las Vegas [70,77] 51 [40,58] [36,60] [40,51] [38,49] [34,43] [34,41] [30,45] [10,20]
Dallas [43,61] [31,44] 33 [28,37] [26,38] [25,36] [23,31] [22,31] [24,28] [8,12]
Philadelphia [35,60] [25,42] [26,35] 28 [22,35] [23,32] [19,30] [19,29] [19,29] [7,11]
San Diego [39,50] [28,35] [24,36] [22,35] 26 [23,29] [21,26] [21,25] [18,28] [6,11]
Chicago [93,125] [67,87] [60,86] [57,81] [60,74] 63 [50,64] [53,59] [44,68] [16,28]
Los Angeles [198,244] [139,175] [125,170] [111,172] [121,150] [115,146] 113 [103,125] [95,130] [34,54]
Houston [92,112] [66,79] [57,79] [53,78] [56,68] [57,63] [47,58] 51 [42,62] [15,26]
San Antonio [60,85] [42,62] [43,52] [36,56] [35,54] [34,53] [32,43] [30,45] 35 [11,17]
New York [207,402] [147,284] [152,234] [148,222] [133,233] [130,224] [117,189] [111,197] [116,178] 55
Totals [952,1279] [677,909] [656,802] [591,809] [595,762] [577,731] [531,614] [510,630] [489,630] [177,257]

(b) Finite-population inference

Phoenix Las Vegas Dallas Philadelphia San Diego Chicago Los Angeles Houston San Antonio New York
Phoenix 93 [65,69] [55,70] [51,70] [54,61] [51,61] [46,51] [46,51] [43,53] [16,21]
Las Vegas [71,75] 51 [43,54] [40,53] [43,47] [40,47] [35,41] [36,39] [34,41] [13,16]
Dallas [45,58] [33,41] 33 [30,35] [28,35] [27,34] [23,31] [24,30] [25,27] [9,11]
Philadelphia [39,54] [28,38] [28,33] 28 [24,32] [24,31] [20,29] [21,27] [20,26] [8,10]
San Diego [41,47] [30,33] [26,33] [24,32] 26 [24,28] [21,25] [22,24] [20,25] [8,10]
Chicago [99,118] [71,83] [63,82] [60,77] [62,71] 63 [51,62] [53,58] [48,63] [19,24]
Los Angeles [208,232] [146,168] [126,168] [116,165] [124,146] [119,142] 113 [106,121] [98,125] [39,49]
Houston [96,107] [69,76] [60,75] [56,72] [59,65] [58,62] [49,56] 51 [46,58] [18,22]
San Antonio [64,78] [46,56] [45,50] [39,51] [38,49] [36,48] [33,42] [32,41] 35 [12,16]
New York [248,326] [177,232] [169,212] [159,204] [152,199] [147,190] [131,165] [130,164] [129,162] 55
Totals [1026,1165] [732,828] [662,793] [611,777] [626,717] [600,691] [535,603] [536,585] [508,602] [198,232]

Note: Diagonal entries are observed lethal encounters (totalling 548 encounters). Off-diagonal entries are 90% confidence intervals
for counterfactual values of lethal encounters Ŷ ∗

t (i, j, zi) in equation (2.19), which replace characteristics of agency i in the rows
with that of agency j in the columns; see the text in Section 2.5.1 for additional details. In this case, we replace only unobserved
determinants of police use of deadly force.
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TABLE A.3. Counterfactual homicides for 2013-2018: observed determinants

(a) Conventional inference

Phoenix San Antonio Las Vegas Los Angeles Houston Dallas San Diego Chicago Philadelphia New York
Phoenix 93 [69,79] [70,78] [65,77] [57,70] [53,67] [45,59] [43,59] [31,52] [27,46]
San Antonio [43,49] 35 [33,39] [34,35] [29,33] [27,32] [23,27] [22,27] [16,24] [14,21]
Las Vegas [63,69] [48,56] 51 [46,55] [40,49] [37,47] [32,41] [31,41] [22,37] [19,32]
Los Angeles [139,164] [116,121] [109,130] 113 [95,108] [89,103] [77,88] [73,89] [52,79] [47,68]
Houston [70,86] [56,65] [55,67] [55,63] 51 [48,50] [38,47] [39,44] [28,39] [24,35]
Dallas [48,61] [39,46] [38,47] [38,44] [36,37] 33 [26,33] [28,30] [20,27] [17,24]
San Diego [43,56] [36,42] [35,44] [35,40] [30,37] [28,35] 26 [23,30] [17,26] [16,22]
Chicago [103,140] [84,105] [81,108] [82,100] [76,84] [73,78] [58,74] 63 [45,58] [39,52]
Philadelphia [52,89] [43,66] [41,69] [42,63] [39,54] [37,50] [30,46] [32,41] 28 [23,29]
New York [114,195] [96,143] [91,151] [94,135] [84,119] [80,110] [69,94] [69,91] [56,71] 55
Totals [774,996] [642,738] [610,773] [626,699] [564,611] [532,572] [442,516] [445,493] [320,435] [286,378]

(b) Finite-population inference

Phoenix San Antonio Las Vegas Los Angeles Houston Dallas San Diego Chicago Philadelphia New York
Phoenix 93 [72,76] [72,76] [69,74] [59,68] [55,64] [48,55] [46,56] [34,47] [31,41]
San Antonio [44,47] 35 [35,37] [34,35] [29,32] [27,31] [24,26] [23,27] [17,22] [16,19]
Las Vegas [64,68] [51,54] 51 [48,52] [42,47] [40,44] [35,38] [33,39] [25,33] [22,28]
Los Angeles [145,156] [117,120] [114,122] 113 [97,106] [91,100] [80,85] [75,87] [57,73] [52,63]
Houston [72,83] [58,64] [58,64] [56,61] 51 [48,49] [40,44] [40,43] [30,36] [27,32]
Dallas [50,58] [40,45] [40,45] [39,43] [36,36] 33 [28,31] [28,30] [21,25] [19,22]
San Diego [46,52] [38,40] [37,41] [36,39] [32,35] [30,33] 26 [25,28] [19,24] [17,20]
Chicago [108,132] [87,102] [86,101] [84,97] [78,83] [73,78] [61,70] 63 [48,54] [43,48]
Philadelphia [58,79] [47,61] [46,61] [45,58] [42,50] [40,47] [33,42] [34,39] 28 [24,27]
New York [129,169] [105,130] [102,130] [102,123] [92,107] [87,100] [74,88] [75,84] [60,66] 55
Totals [813,937] [655,719] [648,720] [636,686] [578,595] [543,560] [459,493] [450,484] [341,407] [309,353]

Note: Diagonal entries are observed lethal encounters (totalling 548 encounters). Off-diagonal entries are 90% confidence intervals
for counterfactual values of lethal encounters Ŷ ∗

t (i, i, zj) in equation (2.19), which replace characteristics of agency i in the rows
with that of agency j in the columns; see the text in Section 2.5.1 for additional details. In this case, we replace only observed
determinants of police use of deadly force.
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A.3.2 Additional results from Section 2.5.2

In this section, I report additional results from the application to firm misallocation in Section 2.5.2.
First, for completeness, Figures A.3, A.4 and A.5 report results for allocative efficiency in the sense of

d log TFP in equation (2.21) for the remaining size quartiles. Second, whereas in the text I have focused
on a baseline measurement model with uncorrelated measurements (but unrestricted heteroskedasticity), I
report here results further allowing for weak dependence.

In particular, given the unbalanced nature of the panel, I allow for richer forms of m-dependence as a
larger number of measurements becomes available. Let Ti denote the number of such periods for firm i. I
choose m = 1 for Ti = 3, m = 2 if Ti ∈ {4, 5}, m = 3 if Ti ∈ {5, 6, 7, 8} and m = 4 if Ti ∈ {9, 10}. In
other words, for firms that enter in 1991 and remain active throughout the panel, we allow for unrestricted
dependence in measurement errors over up to four year horizons. It is easy to see that these choices satisfy
the order condition in Assumption 2.1, sometimes with equality. Note that for chapter2 relative to allocative
efficiency not only the confidence intervals but also the point estimates might change as a consequence, see
equation (A.2).

FIGURE A.1. Labor wedges across the distribution of firm size at entry (relative to 5th percentile). 95% confidence
bands (finite-population and conservative) are displayed together with the point estimates. Results allowing for m-
dependence in measurements, see the text for additional details.

Figures A.1 and A.2 are the counterparts to Figures 2.4 and 2.5. In qualitative terms, the results are similar
to those reported in Chapter 2, although the finite-population confidence intervals tend to be wider. This
reinforces the main message in Section 2.5.2 emphasizing the need to account for measurement-based uncer-
tainty while leaving a minor role for sampling-based uncertainty — even if the analyst treats the population
as a negligible fraction of an infinite superpopulation.

It is also important to stress that sensitivity to the baseline assumption of uncorrelated measurements
might suggest either a restrictive notion of weak dependence or misspecification of the underlying measure-
ment system. Regarding the former, them-dependence restrictions above are only marginally rejected when
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FIGURE A.2. Evolution of allocative efficiency as in equation (2.21) for each cohort (within firms in the bottom size
quartile). 95% confidence bands (finite-population and conservative) are displayed together with the point estimates.
Results allowing for m-dependence in measurements, see the text for additional details.

I implement a test of covariance structures along the lines of Remark 2.4. An alternative is to consider richer
measurement equations for θi beyond the benchmark model. This seems particularly promising in this con-
text, where there might be a time-varying systematic component in labor-related distortions or persistent,
predictable variation in MRPL beyond what is captured in equation (2.20). All of these can be framed within
the class of models discussed in Section 3.3.
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(a) Uncorrelated measurements.

(b) m-dependent measurements.

FIGURE A.3. Evolution of allocative efficiency as in equation (2.21) for each cohort (within firms in the second size
quartile). 95% confidence bands (finite-population and conservative) are displayed together with the point estimates.
See the text for details on dependence over measurements.
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(a) Uncorrelated measurements.

(b) m-dependent measurements.

FIGURE A.4. Evolution of allocative efficiency as in equation (2.21) for each cohort (within firms in the third size
quartile). 95% confidence bands (finite-population and conservative) are displayed together with the point estimates.
See the text for details on dependence over measurements.
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(a) Uncorrelated measurements.

(b) m-dependent measurements.

FIGURE A.5. Evolution of allocative efficiency as in equation (2.21) for each cohort (within firms in the upper size
quartile). 95% confidence bands (finite-population and conservative) are displayed together with the point estimates.
See the text for details on dependence over measurements.



APPENDIX B

APPENDIX TO CHAPTER 3

B.1 Additional proofs

We adopt the following notation in the proofs below. We use PN , EN , VarN , CovN to denote probability,
expectation, variance and covariance given {θi, si}Ni=1 (we insert a subindex κ or κT when necessary).

With a slight abuse of nomenclature we sometimes call Loève’s inequality to the statement |∑m
i=1 Xi |r ≤

cr
∑m
i=1 |Xi |r (with cr = 1 if r ≤ 1 and cr = mr−1 otherwise) where X1, . . . , Xm are random variables and not

just to E
[
|∑m

i=1 Xi |r
]
≤ cr

∑m
i=1 E

[
|Xi |r

]
(which is implied by the former). See Davidson (1994, Theorem

9.28).
Without loss of generality we assume κ ≥ 0. We also define the scaling function g(κ) = max{1, κ} and

note that g(κ)/κ = g(κ−1). In Proposition 3.1

V (h, κ)
g(κ2/N )

=

∑∞
ℓ=0

{
ιℓ (h)β̄2

ℓ EN
[
X2
t X

2
t+h−ℓ

]
+ γ̄2

ℓ EN
[
X2
t Z

2
t+h−ℓ

]}
g(κ2/N )

+
∑N
i=1

∑∞
ℓ=0 ŝ

2
i δ

2
iℓEN

[
X2
t u

2
i,t+h−ℓ

]
Ng(N/κ2)

is bounded below by CM2 > 0 and above by 3C4M4 < ∞ for any κ (and h). The same applies to
V (h, κ)/g(κ2/N ) in Proposition 3.2. In Proposition 3.3, tr{V (h, κ)}/g(κ2/N ) is bounded below by (a2

0 +
1)CM2 > 0 and above by 6(p + 1) (a2

0 + 1)C4M4 < ∞.

Proposition 3.1

Parts (A), (B) and (C) of the proof of Proposition 3.1 in Appendix A.1 are established in Lemmas B.1, B.2
and B.3 below. Lemmas B.4 and B.5 provide auxiliary results for Lemma B.1, while B.6 and B.7 do the same
for B.2. At all times, we make Assumptions 3.1, 3.2 and 3.3 and we fix h and p ≥ h asT,N → ∞ (note we do
not need T/N → 0 here).

Lemma B.1 (Asymptotic normality of the score).∑T−h
t=1 Xtξt (h, κT )√︁
(T − h)V (h, κT )

d−−−−−−→
PκT

N (0, 1).

117
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Proof. The argument relies on the martingale representation:

T−h∑︁
t=1

Xtξt (h, κT )√︁
(T − h)V (h, κT )

=

T∑︁
t=1

χT,t (h, κT )

where we have defined

χT,t (h, κ) =
XtΞX,t (h, κ) + ZtΞZ,t (h) + (κT/N )∑N

i=1 uitΞU,it (h)√︁
(T − h)V (h, κT )

with

ΞX,t (h, κ) =
h∑︁
ℓ=1

1{t − ℓ ≥ 1} β̄h−ℓXt−ℓ +
∞∑︁

ℓ=p+1
1{t ≤ T − h} β̄h+ℓXt−ℓ

+
∞∑︁
ℓ=0

1{t ≤ T − h}
[
γ̄h+ℓZt−ℓ +

κ

N

N∑︁
i=1

ŝiδi,h+ℓui,t−ℓ

]
,

ΞZ,t (h) =
h∑︁
ℓ=1

1{t − ℓ ≥ 1} γ̄h−ℓXt−ℓ ,

ΞU,it (h) =
h∑︁
ℓ=1

1{t − ℓ ≥ 1} ŝiδi,h−ℓXt−ℓ .

Under Assumption 3.2, it can be readily verified that {χT,t (h, κT )}Tt=1 is a martingale difference array
adapted to the natural filtration {FT,t}Tt=1,

FT,t = σ
(
{Xτ , Zτ , {uiτ}Ni=1}τ≤t , {θi, si}Ni=1

)
,

that is, χT,t (h, κT ) is FT,t-measurable and EκT
[
χT,t (h, κT )

��FT,t−1
]
= 0.

By construction,
∑T
t=1 EκT

[
χT,t (h, κT )2]

= 1 and we can show (Lemmas B.4 and B.5)

T∑︁
t=1

χT,t (h, κT )2 p
−−−−−−→

PκT

1 and lim
T→∞

T∑︁
t=1

EκT
[
χT,t (h, κT )4]

= 0.

By Davidson (1994, Theorems 23.11, 23.16 and 24.3), the Lemma follows. □

Lemma B.2 (Consistency of the standard error).

V̂ (h)
V (h, κT )

p
−−−−−−→

PκT

1.

Proof. Since V (h, κT ) > 0 holds PκT -a.s., it suffices to show that

V̂ (h) − V (h, κT )
g(κ2

T/N )
p

−−−−−−→
PκT

0.
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Write

V̂ (h) − V (h, κT )
g(κ2

T/N )
= DT,1(h, κT ) +DT,2(h, κT ),

where we have defined

DT,1(h, κT ) =
T−h∑︁
t=1

(
X2
t ξt (h, κT )2 − EκT

[
X2
t ξt (h, κT )2

���{θi, si}Ni=1
] )

(T − h)g(κ2
T/N )

,

DT,2(h, κT ) =
T−h∑︁
t=1


(
N−1 ∑N

i=1 x̂it (h)ξ̂it (h)
)2

− X2
t ξt (h, κT )2

(T − h)g(κ2
T/N )

 .
Next, using (x2 − y2) = (x − y) (x + y) and the Cauchy-Schwarz inequality,��DT,2(h, κT )

�� ≤ √︃
D−
T,2(h, κT )

√︃
D+
T,2(h, κT ),

with

D−
T,2(h, κT ) =

T−h∑︁
t=1

[(
N−1 ∑N

i=1 x̂it (h)ξ̂it (h)
)
− Xtξt (h, κT )

]2

(T − h)g(κ2
T/N )

,

D+
T,2(h, κT ) =

T−h∑︁
t=1

[(
N−1 ∑N

i=1 x̂it (h)ξ̂it (h)
)
+ Xtξt (h, κT )

]2

(T − h)g(κ2
T/N )

.

Adding and subtracting Xtξt (h, κT ) within the squares in D+
T,2(h, κT ) and applying Loève’s inequality,

D+
T,2(h, κT ) ≤ 2D−

T,2(h, κT ) + 8|DT,1(h, κT ) | +
8V (h, κT )
g(κ2

T/N )
.

We can show (Lemmas B.6 and B.7) that DT,1(h, κT ) = oPκT
(1) and D−

T,2(h, κT ) = oPκT
(1). Given that

V (h, κT )/g(κ2
T/N ) is bounded PκT -a.s., D+

T,2(h, κT ) = OPκT
(1) which implies DT,2(h, κT ) = oPκT

(1) and
the Lemma follows. □

Lemma B.3 (Negligibility of the reminder).

RT (h, κT )
p

−−−−−−→
PκT

0.

Proof. Let x̄t (h) = (Xt−1 − X̄1(h), . . . , Xt−p − X̄p(h))′ where X̄ℓ (h) = (T − h)−1 ∑T−h
t=1 Xt−ℓ . Since either ŝi

was demeaned or time effects were not included as controls,

π̂(h)′Wit = π̂0,i (h) +
p∑︁
ℓ=1

π̂X,ℓ (h) ŝiXt−ℓ = ŝi
(
X̄0(h) + π̂X (h)′x̄t (h)

)
,
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where {π̂0,i (h)},πX (h) = (π̂X,1(h), . . . , π̂X,p(h))′ are the coefficients from the regression of siXt on unit fixed
effects and p lags of ŝiXt. Furthermore, it is readily seen that π̂X (h) are also the coefficients in a regression of
Xt on x̄t (h),

π̂X (h) =
[
T−h∑︁
t=1

x̄t (h)x̄t (h)′
]−1 T−h∑︁

t=1
x̄t (h)Xt .

Note that E
[
Xt−ℓ

]
= E

[
Xt−ℓXt

]
= 0 and that Var

(∑T−h
t=1 Xt−ℓ

)
,Var

(∑T−h
t=1 Xt−ℓXt

)
are bounded by

a constant (M2 and M4, respectively) times (T − h) under Assumptions 3.1, 3.2 and 3.3. Also note that
(T − h)−1 ∑T−h

t=1 x̄t (h)x̄t (h)′ = E
[
X2
t

]
× Ip + oPκT (1). All of this is independent of κT . It follows that

X̄0(h) = OPκT

(
(T − h)−1/2

)
, π̂X (h) = OPκT

(
(T − h)−1/2

)
.

Write

RT (h, κT ) = −
X̄0(h)

∑T−h
t=1 ξt (h, κT )√︁

(T − h)V (h, κT )
−
π̂X (h)′

∑T−h
t=1 x̄t (h)ξt (h, κT )√︁

(T − h)V (h, κT )
.

To obtain RT (h, κT ) = oPκT
(1), we show

{
(T − h)V (h, κT )

}−1/2 ∑T
t=1 ξt (h, κT ) = OPκT

(1) and that{
(T − h)V (h, κT )

}−1/2 ∑T
t=1 x̄t (h)ξt (h, κT ) = OPκT

(1). We do so by direct calculation.

First,

EN,κT


(
T−h∑︁
t=1

ξt (h, κT )
)2 = EN


(
T−h∑︁
t=1

∞∑︁
ℓ=0

ιℓ (h)β̄ℓXt+h−ℓ

)2 + EN

(
T−h∑︁
t=1

∞∑︁
ℓ=0

γ̄ℓZt+h−ℓ

)2
+
κ2
T

N 2EN


(
T−h∑︁
t=1

N∑︁
i=1

∞∑︁
ℓ=0

ŝiδiℓui,t+h−ℓ

)2
≤ 2(T − h)

[ ( ∞∑︁
ℓ=0

ιℓ (h) |β̄ℓ |
)2

EN
[
X2
t

]
+

( ∞∑︁
ℓ=0

|γ̄ℓ |
)2

EN
[
Z2
t

]
+
κ2
T

N 2

N∑︁
i=1

( ∞∑︁
ℓ=0

|ŝiδiℓ |
)2

EN
[
u2
it

] ]
≤ (T − h) × 2(2 + κ2

T/N )C4M2,

where the last line uses Assumption 3.3(i)–(iv).1 By iterated expectations and Chebyshev’s inequality, for any

1We also used the fact that for any linear process ωt =
∑∞
ℓ=0 φℓ εt−ℓ where {φℓ } are absolutely summable and {εt} is white

noise with E
[
εt
]
= 0 and E

[
ε2
t

]
= 1,

E


(
T∑︁
t=1

ωt

)2 =

T−1∑︁
m=−(T−1)

(T − |m|)
∞∑︁
ℓ=0

φℓφℓ+|m | ≤ T
∞∑︁
ℓ=0

|φℓ |
∞∑︁

m=−∞
|φℓ+|m | | ≤ 2T

( ∞∑︁
ℓ=0

|φℓ |
)2

.
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ε > 0,

PκT

(����� ∑T
t=1 ξt (h, κT )√︁

(T − h)V (h, κT )

����� > ε

)
= EκT

[
PN,κT

(����� ∑T
t=1 ξt (h, κT )√︁

(T − h)V (h, κT )

����� > ε

)]
≤ 1
ε2EκT

[
2(2 + κ2

T/N )C4M2
V (h, κT )

]
≤ 1
ε2

6C4M2

CM2 < ∞,

where the bound on (2 + κ2
T/N )/V (h, κT ) = ((2 + κ2

T/N )/g(κ2
T/N )) × (g(κ2

T/N )/V (h, κT )) uses
(2 + κ)/g(κ) ≤ 3 and V (h, κT )/g(κ2

T/N ) ≥ CM2.

Similarly for any k = 1, . . . , p,

EN,κT


(
T−h∑︁
t=1

Xt−kξt (h, κT )
)2 ≤ (T − h)

[ ∞∑︁
ℓ=0

ιℓ (h)β̄2
ℓ EN

[
X2
t−kX

2
t+h−ℓ

]
+

∞∑︁
ℓ=0

γ̄2
ℓ EN

[
X2
t−kZ

2
t+h−ℓ

]
+
κ2
T

N 2

N∑︁
i=1

∞∑︁
ℓ=0

ŝ2i δ
2
iℓEN

[
X2
t−ku

2
i,t+h−ℓ

]
+ 2

h+k∑︁
ℓ=1

ιh+k−ℓ (h)ιh+k+ℓ (h) |β̄h+k−ℓ β̄h+k+ℓ |EN
[
X2
t−kX

2
t−k−ℓ

] ]
≤ (T − h) × (4 + κ2

T/N )C4M4,

where we used the autocovariances of Xt−kξt (h, κT ) and Assumption 3.3(i)–(iv) again. By iterated expecta-
tions and Chebyshev, for any ε > 0,

PκT

(����� ∑T
t=1 Xt−rξt (h, κT )√︁
(T − h)V (h, κT )

����� > ε

)
≤ 1
ε2EκT

[
(4 + κ2

T/N )C4M4
V (h, κT )

]
≤ 1
ε2

5C4M4

CM2 < ∞.

Thus, RT (h, κT ) = oPκT
(1) and the Lemma follows. □

Lemma B.4. Under the conditions of Lemma B.1,

T∑︁
t=1

χT,t (h, κT )2 p
−−−−−−→

PκT

1.

Proof. We show VarN,κT
(∑T

t=1 χT,t (h, κT )2
)
≤ V̄/(T − h) for a constant V̄ independent of κT . Since

EN,κT

[∑T
t=1 χT,t (h, κT )2]

= 1, by iterated expectations and Chebyshev’s inequality, for any ε > 0,

PκT

(����� T∑︁
t=1

χT,t (h, κT )2 − 1

����� > ε

)
= EκT

[
PN,κT

(����� T∑︁
t=1

χT,t (h, κT )2 − 1

����� > ε

)]
≤ V̄

ε2(T − h)
→ 0.

As argued at the beginning of the section, V (h, κ)/g(κ2/N ) is bounded away from zero and infinity
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uniformly over κ. Thus, it suffices to show

VarN,κT

(
T∑︁
t=1

V (h, κT )χT,t (h, κT )2

g(κ2
T/N )

)
≤ V̄

T − h
,

PκT -a.s., for some constant V̄ independent of κT . We do this by a direct calculation. Define χ̄T,t (h, κT ) =
χT,t (h, κT )

{
(T − h)V (h, κT )/g(κ2

T/N )
}1/2 so that

g

(
κT√
N

)
χ̄T,t (h, κT ) = XtΞX,t (h, κ) + ZtΞZ,t (h) +

κT
N

N∑︁
i=1

uitΞU,it (h)

=

∞∑︁
ℓ=1

bt,ℓXtXt−ℓ︸          ︷︷          ︸
≡g(κT /

√
N )ζ1,t

+
∞∑︁
ℓ=0

ct,ℓXtZt−ℓ︸         ︷︷         ︸
≡g(κT /

√
N )ζ2,t

+
h∑︁
ℓ=1

c̃t,ℓZtXt−ℓ︸         ︷︷         ︸
≡g(κT /

√
N )ζ3,t

+ κT
N

N∑︁
i=1

∞∑︁
ℓ=0

dit,ℓXtui,t−ℓ︸                      ︷︷                      ︸
≡g(κT /

√
N )ζ4,t

+ κT
N

N∑︁
i=1

h∑︁
ℓ=1

d̃it,ℓuitXt−ℓ︸                     ︷︷                     ︸
≡g(κT /

√
N )ζ5,t

(B.1.1)

for some {bt,ℓ , ct,ℓ , c̃t,ℓ , {dit,ℓ , d̃it,ℓ }Ni=1} that depend on {θi, si}Ni=1 (and h). Note that the coefficients depend
on t only via the indicator functions 1{t − ℓ ≤ 1} and 1{t ≤ T − h}. We define {bℓ , cℓ , c̃ℓ , {di,ℓ , d̃i,ℓ }Ni=1} as
the coefficients we would get by setting the indicators to one. This implies |bt,ℓ | ≤ |bℓ |, |ct,ℓ | ≤ |cℓ |, and
so on. By Assumption 3.3(iv), |bℓ |, |cℓ |, |c̃ℓ |, |diℓ |, |d̃iℓ | ≤ C̄ℓ almost surely for finite constants C̄ℓ such that
C̄ =

∑∞
ℓ=1 C̄ℓ < ∞ (in fact, we can take C̄ ≤ C2 independent of h).

Consider the variance

VarN,κT

(
T∑︁
t=1

V (h, κT )χT,t (h, κT )2

g(κ2
T/N )

)
=

∑T
t=1

∑T
τ=1 ΓT (t, τ)

(T − h)2

where (omitting the dependence on h, κT and {θi, si}Ni=1)

ΓT (t, τ) = CovN,κT
(
χ̃T,t (h, κT )2, χ̃T,τ (h, κT )2

)
.

Expanding the square of χ̃T,t (h, κT ) and using the linearity of the covariance we can express ΓT (t, τ) as the
sum of covariances ΓT,k1k2k3k4

(t, τ) = CovN,κT
(
ζk1,t

ζk2,t
, ζk3,τ

ζk4,τ

)
where k1, k2, k3, k4 range over the five

terms in (B.1.1). Moreover, if k1 = k2, ΓT,k1k2k3k4
(t, τ) can only be non-zero if k3 = k4, while if k1 ≠ k2, only

if either k1 = k3 and k2 = k4 or k1 = k4 and k2 = k3. Then, by the triangle inequality,

��ΓT (t, τ)�� =
������ 5∑︁
k1=1

5∑︁
k2=1

5∑︁
k3=1

5∑︁
k4=1

ΓT,k1k2k3k4
(t, τ)

������
≤

5∑︁
k1=1

5∑︁
k3=1

���ΓT,k1k1k3k3
(t, τ)

��� + 2
5∑︁

k1=1

5∑︁
k2=1

���ΓT,k1k2k1k2
(t, τ)

��� . (B.1.2)
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We begin with
∑T
t=1

∑T
τ=1 ΓT,k1k1k3k3

(t, τ). Consider k1 = k3 = 1:

g

(
κ4
T

N 2

) ��ΓT,1111(t, τ)
�� = ������CovN

©­«
( ∞∑︁
ℓ=1

bt,ℓXtXt−ℓ

)2

,

( ∞∑︁
ℓ=1

bτ,ℓXτXτ−ℓ

)2ª®¬
������

=

������ ∞∑︁
ℓ1=1

∞∑︁
ℓ2=1

∞∑︁
ℓ3=1

∞∑︁
ℓ4=1

bt,ℓ1bt,ℓ2bτ,ℓ3bτ,ℓ4 CovN
(
X2
t Xt−ℓ1Xt−ℓ2 , X

2
τ Xτ−ℓ3Xτ−ℓ4

)������
≤

∞∑︁
ℓ1=1

∞∑︁
ℓ3=1

b2
ℓ1
b2
ℓ3

���CovN
(
X2
t X

2
t−ℓ1 , X

2
τ X

2
τ−ℓ3

)���
+ 2

∞∑︁
ℓ1=1

∑︁
ℓ2≠ℓ1

|bℓ1bℓ2bℓ1+τ−tbℓ2+τ−t |
���CovN

(
X2
t Xt−ℓ1Xt−ℓ2 , X

2
τ Xt−ℓ1Xt−ℓ2

)��� .
The inequality uses the fact that by Assumption 3.2, CovN

(
X2
t Xt−ℓ1Xt−ℓ2 , X

2
τ Xτ−ℓ3Xτ−ℓ4

)
can only be non-

zero if ℓ1 = ℓ2 and ℓ3 = ℓ4 or, with ℓ1 ≠ ℓ2, if either ℓ3 = ℓ1 + τ − t and ℓ4 = ℓ2 + τ − t or ℓ3 = ℓ2 + τ − t and
ℓ4 = ℓ1 + τ − t.2 We also use |bt,ℓ | ≤ |bℓ |.

For the first double sum, now summing over t and τ,

T∑︁
t=1

T∑︁
τ=1

∞∑︁
ℓ1=1

∞∑︁
ℓ3=1

b2
ℓ1
b2
ℓ3

���CovN
(
X2
t X

2
t−ℓ1 , X

2
τ X

2
τ−ℓ3

)���
≤ 2T

T−1∑︁
m=0

∞∑︁
ℓ1=1

∞∑︁
ℓ3=1

C̄2
ℓ1
C̄2

���CovN
(
X2
t X

2
t−ℓ1 , X

2
t−mX

2
t−m−ℓ3

)���
≤ 2TC̄2

∞∑︁
ℓ1=1

C̄2
ℓ1

©­«
∞∑︁

j1=−∞

∞∑︁
j2=−∞

���CovN
(
X2
t X

2
t−ℓ1 , X

2
t−mX

2
t−m−ℓ3

)���ª®¬
≤ 2TC̄2K̄

∞∑︁
ℓ1=1

C̄2
ℓ1
≤ 2TC̄4K̄

for some constant K̄ that can be shown to exist as by Assumption 3.3(iii) the fourth-order cumulants of X2
t

conditional on {θi, si}Ni=1 are absolutely summable.

Turning to the second double sum, by Assumption 3.2, since ℓ1 ≠ ℓ2,���CovN
(
X2
t Xt−ℓ1Xt−ℓ2 , X

2
τ Xτ−ℓ1Xτ−ℓ2

)��� = ���EN [
X2
t X

2
τ X

2
t−ℓ1X

2
t−ℓ2

] ��� ≤ EN
[
X8
t

]
≤ M8,

where M8 is the moment bound from Assumption 3.3(i). Then,

2
T∑︁
t=1

T∑︁
τ=1

∞∑︁
ℓ1=1

∑︁
ℓ2≠ℓ1

|bℓ1bℓ2bℓ1+τ−tbℓ2+τ−t |
���CovN

(
X2
t Xt−ℓ1Xt−ℓ2 , X

2
τ Xt−ℓ1Xt−ℓ2

)���
2This is similar to the proof of Montiel Olea and Plagborg-Møller (2021, Lemma A.6)
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≤ 4TM8

T−1∑︁
m=0

∞∑︁
ℓ1=1

∑︁
ℓ2≠ℓ1

|bℓ1bℓ2bℓ1+mbℓ2+m |

≤ 4TM8

∞∑︁
ℓ1=1

∞∑︁
ℓ2=1

|bℓ1 | |bℓ2 |
( ∞∑︁
m=0

|bℓ1+m | |bℓ2+m |
)

≤ 4TM8

∞∑︁
ℓ1=1

∞∑︁
ℓ2=1

|bℓ1 | |bℓ2 |
©­«

∞∑︁
m1=1

|bm1
|2

∞∑︁
m2=1

|bm2
|2ª®¬

1/2

≤ 4TC̄4M8,

where the second inequality increases the range of summation over ℓ2 andm, the third uses Cauchy-Schwarz
and the fourth follows from Assumption 3.3(iv).

Putting these calculations together and using g(κ) ≥ 1,∑T
t=1

∑T
τ=1

��ΓT,1111(t, τ)
��

(T − h)2 ≤ T × 2C̄4(K̄ + 2M8)
g(κ4

T/N
2) (T − h)2 ≤ 2C̄4(K̄ + 2M8)

(1 − h/T ) (T − h) .

In fact, the same bound works for
∑T
t=1

∑T
τ=1

���ΓT,k1k1k3k3
(t, τ)

��� for any k1, k3 ∈ {1, 2, 3}.

Next consider k1 = k3 = 4:

g

(
κ4
T

N 2

) ��ΓT,4444(t, τ)
��

(κ4
T/N

4)
=

������CovN
©­«
(
N∑︁
i=1

∞∑︁
ℓ=1

dit,ℓXtui,t−ℓ

)2

,

(
N∑︁
i=1

∞∑︁
ℓ=1

diτ,ℓXτui,τ−ℓ

)2ª®¬
������

=

����� N∑︁
i1=1

N∑︁
i2=1

N∑︁
i3=1

N∑︁
i4=1

∞∑︁
ℓ1=1

∞∑︁
ℓ2=1

∞∑︁
ℓ3=1

∞∑︁
ℓ4=1

di1t,ℓ1di2t,ℓ2di3τ,ℓ3di4τ,ℓ4

× CovN
(
X2
t ui1,t−ℓ1ui2,t−ℓ2 , X

2
τ ui3,τ−ℓ3ui4,τ−ℓ4

) �����
≤

N∑︁
i1=1

N∑︁
i3=1

����� ∞∑︁
ℓ1=1

∞∑︁
ℓ2=1

∞∑︁
ℓ3=1

∞∑︁
ℓ4=1

di1t,ℓ1di1t,ℓ2di3τ,ℓ3di3τ,ℓ4

× CovN
(
X2
t ui1,t−ℓ1ui1,t−ℓ2 , X

2
τ ui3,τ−ℓ3ui3,τ−ℓ4

) �����
+

N∑︁
i1=1

N∑︁
i2=1

����� ∞∑︁
ℓ1=1

∞∑︁
ℓ2=1

∞∑︁
ℓ3=1

∞∑︁
ℓ4=1

di1t,ℓ1di2t,ℓ2di1τ,ℓ3di2τ,ℓ4

× CovN
(
X2
t ui1,t−ℓ1ui2,t−ℓ2 , X

2
τ ui1,τ−ℓ3ui2,τ−ℓ4

) �����
+

N∑︁
i1=1

N∑︁
i2=1

����� ∞∑︁
ℓ1=1

∞∑︁
ℓ2=1

∞∑︁
ℓ3=1

∞∑︁
ℓ4=1

di1t,ℓ1di2t,ℓ2di2τ,ℓ3di1τ,ℓ4

× CovN
(
X2
t ui1,t−ℓ1ui2,t−ℓ2 , X

2
τ ui2,τ−ℓ3ui1,τ−ℓ4

) �����.
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The inequality uses the fact that CovN
(
X2
t ui1,t−ℓ1ui1,t−ℓ2 , X

2
τ ui3,τ−ℓ3ui3,τ−ℓ4

)
can only be non-zero if i1 = i2

and i3 = i4, or i1 = i3 and i2 = i4, or i1 = i4 and i2 = i3.

Summing over t and τ and applying to each of the three summands on the right hand side the same steps
as the case k1 = k3 = 1,∑T

t=1
∑T
τ=1

��ΓT,4444(t, τ)
��

(T − h)2 ≤
3N 2 × κ4

T/N
4 × 2C̄4(K̄ + 2M8)

g(κ4
T/N

2) (1 − h/T ) (T − h)
≤ 6C̄4(K̄ + 2M8)

(1 − h/T ) (T − h) .

Repeating the calculation for the remaining cases (and noting that this bound is three times larger than
the one we computed for k1 = k3 = 1) we conclude that 6C̄4(K̄ + 2M8)/(1 − h/T ) (T − h) works for any
k1, k3 ∈ {1, 2, 3, 4, 5}. By similar reasoning, the bound also works for

∑T
t=1

∑T
τ=1 ΓT,k1k2k1k2

(t, τ) whenever
k1 ≠ k2. We then get ∑T

t=1
∑T
τ=1 ΓT (t, τ)

(T − h)2 ≤ V̄

(T − h) ,

where V̄ = 75 × 6C̄4(K̄ + 2M8)/(1 − h/T ) does not depend on κT (75 is the number of covariances in
(B.1.2)). This establishes

∑T
t=1 χT,t (h, κT )2

= 1 + oPκT (1). □

Lemma B.5. Under the conditions of Lemma B.1,

lim
T→∞

T∑︁
t=1

EκT
[
χ4
T,t

]
= 0.

Proof. Using the notation of Lemma B.4 and Loève’s inequality,

EN
[
χ̄T,t (h, κT )4] ≤ 53

5∑︁
k=1

EN
[
ζ 4
k,t

]
. (B.1.3)

Each of the five terms in (B.1.3) is under Assumption 3.3(i)–(iv) bounded by a constant that does not depend
on κT . For k = 1,

g

(
κ4
T

N 2

)
EN

[
ζ 4

1,t
]
= EN


( ∞∑︁
ℓ=1

bt,ℓXtXt−ℓ

)4
≤

∞∑︁
ℓ1=1

∞∑︁
ℓ2=1

∞∑︁
ℓ3=1

∞∑︁
ℓ4=1

|bt,ℓ1bt,ℓ2bt,ℓ3bt,ℓ4 |
���EN [

X4
t Xt−ℓ1Xt−ℓ2Xt−ℓ3Xt−ℓ4

] ���
≤ M8

∞∑︁
ℓ1=1

∞∑︁
ℓ2=1

∞∑︁
ℓ3=1

∞∑︁
ℓ4=1

|bℓ1bℓ2bℓ3bℓ4 | ≤ M8

( ∞∑︁
ℓ=1

|bℓ |
)4

≤ M8C̄
4,

where C̄ is the constant we defined in the first part. The same bound works for k = 2 and k = 3 in (B.1.3).
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For k = 4,

g

(
κ4
T

N 2

)
EN

[
ζ 4

4,t
]

(κ4
T/N

4)
= EN


(
N∑︁
i=1

∞∑︁
ℓ=1

dit,ℓXtui,t−ℓ

)4
≤

N∑︁
i1=1

N∑︁
i2=1

N∑︁
i3=1

N∑︁
i4=1

∞∑︁
ℓ1=1

∞∑︁
ℓ2=1

∞∑︁
ℓ3=1

∞∑︁
ℓ4=1

|di1t,ℓ1di2t,ℓ2di3t,ℓ3di4t,ℓ4 |

×
���EN [

X4
t ui1,t−ℓ1ui2,t−ℓ2ui3,t−ℓ3ui4,t−ℓ4

] ���
≤ 3

N∑︁
i1=1

N∑︁
i2=1

∞∑︁
ℓ1=1

∞∑︁
ℓ2=1

|d2
i1t,ℓ1

d2
i2t,ℓ2

|
���EN [

X4
t u

2
i1,t−ℓ1u

2
i2,t−ℓ2

] ���
≤ 3N 2M8

∞∑︁
ℓ1=1

∞∑︁
ℓ2=1

d2
ℓ1
d2
ℓ2
≤ 3N 2M8C̄

4,

where the second inequality uses that for EN
[
X4
t ui1,t−ℓ1ui2,t−ℓ2ui3,t−ℓ3ui4,t−ℓ4

]
to be non-zero we need i1 = i2

and i3 = i4, or i1 = i3 and i2 = i4, or i1 = i4 and i2 = i3 because of Assumptions 3.1(ii) and 3.2. The same
bound applies to k = 5 in (B.1.3).

Putting these bounds together,

T∑︁
t=1

EN
[
χT,t (h, κT )4]

=

∑T
t=1 EN

[
χ̄T,t (h, κT )4] g(κ4

T/N
2)

(T − h)2V (h, κT )2 ≤
9M8C̄

4g(κ4
T/N

2)
(1 − h/T ) (T − h)V (h, κ2

T )
2 .

Since V (h, κT )2/g(κ4
T/N

2) ≥ CM2 > 0, we conclude
∑T
t=1 EκT

[
χT,t (h, κT )4]

= o(1) by iterated expecta-
tions where the convergence is uniform over κT . □

Lemma B.6. Under the conditions of Lemma B.2,

T−h∑︁
t=1

X2
t ξt (h, κT )2 − EκT

[
X2
t ξt (h, κT )2

���{θi, si}Ni=1
]

(T − h)g(κ2
T/N )

p
−−−−−−→

PκT

0.

Proof. The proof is analogous to that of Lemma B.4. We will show that for a constant V̄ independent of κT ,
VarN,κT

(∑T
t=1 X

2
t ξt (h, κT )2/g(κ2

T/N )
)
≤ V̄ (T − h). By iterated expectations and Chebyshev’s inequality

it will follow that, for any ε > 0,

PκT

(����� T∑︁
t=1

X2
t ξt (h, κT )2 − EN,κT

[
X2
t ξt (h, κT )2]

(T − h)g(κ2
T/N )

����� > ε

)
≤ V̄

ε2(T − h)
→ 0.

We can write

Xtξt (h, κT ) =
∞∑︁
ℓ=0

ιℓ (h)β̄ℓXtXt+h−ℓ +
∞∑︁
ℓ=0

γ̄ℓXtZt+h−ℓ +
κT
N

N∑︁
i=1

∞∑︁
ℓ=0

ŝiδiℓXtui,t−ℓ
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=

∞∑︁
ℓ=0

bℓXtXt+h−ℓ︸           ︷︷           ︸
≡g(κT /

√
N )ζ1,t

+
∞∑︁
ℓ=0

cℓXtZt+h−ℓ︸           ︷︷           ︸
≡g(κT /

√
N )ζ2,t

+ κT
N

N∑︁
i=1

∞∑︁
ℓ=0

diℓXtui,t+h−ℓ︸                       ︷︷                       ︸
≡g(κT /

√
N )ζ3,t

. (B.1.4)

for some coefficients {bℓ , cℓ , {diℓ }Ni=1} that depend on {θi, si}Ni=1 (and h). By Assumption 3.3(iv), we have
|bℓ |, |cℓ |, |diℓ | ≤ Cℓ almost surely for some positive finite constants Cℓ such that C =

∑∞
ℓ=1 Cℓ < ∞. Note

that the coefficients, constants and variables ζ1,t, ζ2,t, ζ3,t are different from the ones in the proof of Lemma
B.4.

Consider the variance

VarN,κT

(
T∑︁
t=1

X2
t ξt (h, κT )2

g(κ2
T/N )

)
=

T−h∑︁
t=1

T−h∑︁
τ=1

ΓT (t, τ)

where (omitting the dependence on h, κT and {θi, si}Ni=1)

ΓT (t, τ) = CovN,κT

(
X2
t ξt (h, κT )2

g(κT/
√
N )

,
X2
τ ξτ (h, κT )2

g(κT/
√
N )

)
.

As in the proof of Lemma B.4, we expand the square of X2
t ξt (h, κT )2 to express ΓT (t, τ) as the sum of

covariances ΓT,k1k2k3k4
(t, τ) = CovN,κT

(
ζk1,t

ζk2,t
, ζk3,τ

ζk4,τ

)
where k1, k2, k3, k4 range over the three terms in

(B.1.4). If k1 = k2, ΓT,k1k2k3k4
(t, τ) can only be non-zero if k3 = k4, while if k1 ≠ k2, only if either k1 = k3

and k2 = k4 or k1 = k4 and k2 = k3. Then,

��ΓT (t, τ)�� = 3∑︁
k1=1

3∑︁
k2=1

3∑︁
k3=1

3∑︁
k4=1

���ΓT,k1k2k3k4
(t, τ)

���
=

3∑︁
k1=1

3∑︁
k3=1

���ΓT,k1k1k3k3
(t, τ)

��� + 2
3∑︁

k1=1

3∑︁
k2=1

���ΓT,k1k2k1k2
(t, τ)

��� . (B.1.5)

By calculations similar to that of Lemma B.4, for any k1, k2, k3 ∈ {1, 2, 3},

T−h∑︁
t=1

T−h∑︁
τ=1

���ΓT,k1k1k3k3
(t, τ)

��� ≤ 6C4(K̄ + 2M8) × (T − h),

T−h∑︁
t=1

T−h∑︁
τ=1

���ΓT,k1k2k1k2
(t, τ)

��� ≤ 6C4(K̄ + 2M8) × (T − h).

We therefore arrive at

T∑︁
t=1

T∑︁
τ=1

ΓT (t, τ) ≤ V̄ (T − h),

with V̄ = 27 × 6C4(K̄ + 2M8) independent of κT (27 is the number of terms in (B.1.5)). Hence, {(T −
h)g(κ2

T/N )}−1 ∑T
t=1

(
X2
t ξt (h, κT )2 − EN,κT

[
X2
t ξt (h, κT )2] )

= oPκT
(1). □
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Lemma B.7. Under the conditions of Lemma B.2,

T−h∑︁
t=1

[(
N−1 ∑N

i=1 x̂it (h)ξ̂it (h)
)
− Xtξt (h, κT )

]2

(T − h)g(κ2
T/N )

p
−−−−−−→

PκT

0.

Proof. We begin by writing

x̂it (h) = ŝi (Xt − X̂t (h)), X̂t (h) = X̄0(h) + π̂X (h)′x̄t (h), (B.1.6)

with X̄0(h), π̂X (h) and x̄t (h) = (Xt−1 − X̄1(h), . . . , Xt−p − X̄p(h))′ as in the proof of Lemma B.3. As argued,

X̄0(h) = OPκT

(
(T − h)−1/2

)
and π̂X (h) = OPκT

(
(T − h)−1/2

)
.

Next, we write η̂(h)′Wit = η̂0,i (h) + η̂X (h)′x̄t (h) ŝi and ηX,ih = (βi,h+1, . . . , βi,h+p)′ so that

ξ̂it (h) − ξit (h, κT ) =
(
μi − η̂0,i (h) +

p∑︁
ℓ=1

βi,h+ℓ X̄ℓ (h)
)
+ (βih − β̂(h) ŝi)Xt + (ηX,ih − η̂X (h) ŝi)′x̄t (h)

and we note(
β̂(h)
η̂X (h)

)
=

[
T−h∑︁
t=1

(
Xt − X̄0(h)

x̄t (h)

) (
Xt − X̄0(h)

x̄t (h)

)′]−1 T−h∑︁
t=1

(
Xt − X̄0(h)

x̄t (h)

)
Ŷt+h

=

(
β̃(h)
η̃X (h)

)
+

[
T−h∑︁
t=1

(
Xt − X̄0(h)

x̄t (h)

) (
Xt − X̄0(h)

x̄t (h)

)′]−1 T−h∑︁
t=1

(
Xt − X̄0(h)

x̄t (h)

)
ξt (h, κT )

(N−1 ∑N
i=1 ŝ

2
i )

where Ŷt+h = (∑N
i=1 ŝ

2
i )−1 ∑N

i=1 ŝiYi,t+h and η̃X (h) = (∑N
i=1 ŝ

2
i )−1 ∑N

i=1 ŝiηX,ih. Since the least squares denom-
inator matrix when scaled by (T − h)−1 converges to E

[
X2
t

]
× Ip+1 in probability uniformly over κT , the

calculations in Lemma 3.3 imply that

(N−1 ∑N
i=1 ŝ

2
i ) (β̂(h) − β̃(h))

g(κT/
√
N )

= OPκT

(
(T − h)−1/2

)
,

(N−1 ∑N
i=1 ŝ

2
i ) (η̂X (h) − η̃X (h))

g(κT/
√
N )

= OPκT

(
(T − h)−1/2

)
.

Because Wit includes unit effects,
∑N
i=1 x̂it (h) (η̂0,i (h) − μi +

∑p

ℓ=1 βi,h+ℓ X̄ℓ (h)) = 0 and,

N−1
N∑︁
i=1

x̂it (h) (ξ̂it (h) − ξit (h, κT )) =
(
N−1

N∑︁
i=1

ŝ2i

)
(β̃(h) − β̂(h))Xt (Xt − X̂t (h))

+
(
N−1

N∑︁
i=1

ŝ2i

)
(η̃X (h) − η̂X (h))′x̄t (h) (Xt − X̂t (h)). (B.1.7)

To prove the Lemma, add and subtract N−1 ∑N
i=1 x̂it (h)ξit (h, κT ) within the squares and use Loève’s
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inequality to obtain

T−h∑︁
t=1

[(
N−1 ∑N

i=1 x̂it (h)ξ̂it (h)
)
− Xtξt (h, κT )

]2

(T − h)g(κ2
T/N )

≤ 2Dπ
T,2(h, κT ) + 2Dη

T,2(h, κT ),

where

Dπ
T,2(h, κT ) =

T−h∑︁
t=1

[
N−1 ∑N

i=1(ŝiXt − x̂it (h))ξit (h, κT )
]2

(T − h)g(κ2
T/N )

,

D
η

T,2(h, κT ) =
T−h∑︁
t=1

[
N−1 ∑N

i=1 x̂it (h) (ξ̂it (h) − ξit (h, κT ))
]2

(T − h)g(κ2
T/N )

.

Inserting (B.1.6) into the first term and using Loève’s inequality,

Dπ
T,2(h, κT ) ≤ 2

[
X̄0(h)2

∑T−h
t=1 ξt (h, κT )2

(T − h)g(κ2
T/N )

+ ∥π̂X (h)∥2
∑T−h
t=1 ∥x̄t (h)ξt (h, κT )∥2

(T − h)g(κ2
T/N )

]
,

where ∥ · ∥ is Euclidean norm. From calculations similar to those in Lemma B.3,∑T−h
t=1 ξt (h, κT )2

(T − h)g(κ2
T/N )

= OPκT
(1) and

∑T−h
t=1 ∥x̄t (h)ξt (h, κT )∥2

(T − h)g(κ2
T/N )

= OPκT
(1) ,

which allows us to conclude that Dπ
T,2(h, κT ) = oPκT

(1).

Inserting (B.1.7) into the second term and using Loève’s inequality,

D
η

T,2(h, κT ) ≤ 2

(
(N−1 ∑N

i=1 ŝ
2
i ) (β̃(h) − β̂(h))

g(κT/
√
N )

)2 ∑T−h
t=1 X2

t (Xt − X̂t (h))2

T − h

+






(
(N−1 ∑N

i=1 ŝ
2
i ) (η̃X (h) − η̂X (h))

g(κT/
√
N )

)




2 ∑T−h
t=1 ∥x̄t (h) (Xt − X̂t (h))∥2

T − h

 .
Under Assumption 3.3(i), we can show that (T − h)−1 ∑T−h

t=1 X2
t (Xt − X̂t (h))2

= OPκT
(1) and (T −

h)−1 ∑T−h
t=1 ∥xt (h) (Xt − X̂t (h))∥2

= OPκT
(1). Thus, Dη

T,2(h, κT ) = oPκT
(1). □

Proposition 3.2

Parts (A), (B) and (C) of the proof of Proposition 3.2 in Appendix A.1 are established in Lemmas B.8, B.9
and B.10 below. The argument closely resembles the proof of Proposition 3.1 and, therefore, in order to
conserve space we only sketch the steps. Again, we adopt Assumptions 3.1, 3.2 and 3.3, we fix p and assume
hT/T ≤ ϕ < 1 as T,N → ∞.
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Lemma B.8 (Asymptotic normality of the score).∑T−hT
t=1 Xtξt (hT , κT )√︁
(T − hT )V (hT , κT )

d−−−−−−→
PκT

N (0, 1).

Proof. The proof given for Lemma B.1 goes through with the following adjustment: we can remove the
terms β̄ℓ , γ̄ℓ , δiℓ from ΞX,t (h, κ) whenever ℓ > h. That is, we set

ΞX,t (h, κ) =
h∑︁
ℓ=1

1{t − ℓ ≥ 1} β̄h−ℓXt−ℓ + 1{t ≤ T − h}
[
γ̄hZt +

κ

N

N∑︁
i=1

ŝiδihuit

]
.

The calculations in Lemmas B.4 and B.5 apply with the same adjustment. In Lemma B.4, V̄ ≤ 75×6C8(K̄+
2M8)/(1 − ϕ), which does not depend on κT or hT . Similarly, in Lemma B.5,

∑T
t=1 EN

[
χT,t (hT , κT )4] ≤

9M8C
8/(1 − ϕ)2CM2T , which tends to zero as T → ∞ uniformly over κT and hT . □

Lemma B.9 (Consistency of the standard error).

V̂ (hT )
V (hT , κT )

p
−−−−−−→

PκT

1.

Proof. The proofs of Lemma B.2 and auxiliary Lemma B.6 go through without change. To establish the
equivalent to Lemma B.7 in this context, define x̄t (hT ) as in its proof and let ȳit (hT ) = (Ŷi,t−1(hT ), . . . , Ŷi,t−p(hT ))
with Ŷi,t−ℓ (hT ) the residual from regressing g(κT )−1Yi,t−ℓ on unit and time effects. We can write

π̂(hT )′Wit = ŝiX̄0(hT ) + ŝiπ̂X (hT )′x̄t (hT ) + π̂Y (hT )′ȳit (hT ),
η̂(hT )′Wit = η̂0,i (hT ) + ŝiη̂X (hT )′x̄t (hT ) + η̂Y (hT )′ȳit (hT ).

Scaling Yi,t−ℓ by g(κT )−1 leaves the least square predictions π̂(hT )′Wit and η̂(hT )′Wit unchanged, but it
helps bound them in probability uniformly over κT .

Calculations similar to those in Lemma B.3 deliver

©­­«
X̄0(hT )
π̂X (hT )
π̂Y (hT )

ª®®¬ = OPκT

(
(T − hT )−1/2

)
,

g

(
κT√
N

)−1 ©­­«
(β̂(hT ) − β̃(hT ))

(η̂X (hT ) − η̃X (hT ))
(η̂Y (hT ) − η̃Y (hT ))

ª®®¬ = OPκT

(
(T − hT )−1/2

)
,

where η̃X (hT ) = (B̃1(hT ), . . . , B̃p(hT ))′ and η̃Y (hT ) = g(κT ) (A1(hT ), . . . , Ap(hT ))′ withAℓ (h) and B̃ℓ (h)
as defined in the proof of Proposition 3.2 in Appendix A.1.

The rest of the proof follows the steps of Lemma B.7. The convergence is uniform in both κT and hT
because T − hT ≤ (1 − ϕ)T with ϕ < 1. □
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Lemma B.10 (Negligibility of the remainder).

RT (hT , κT )
p

−−−−−−→
PκT

0.

Proof. We begin by defining x̄t (hT ) and ȳit (h) as in Lemma B.9, by writing

π̂(hT )′Wit = ŝiX̄0(hT ) + ŝiπ̂X (hT )′x̄t (hT ) + π̂Y (hT )′ȳit (hT ),

and by noting again that

©­­«
X̄0(hT )
π̂X (hT )
π̂Y (hT )

ª®®¬ = OPκT

(
(T − hT )−1/2

)
.

Next, we write rit (hT ) = (βih − β̃(h) ŝi)Xt +
∑p

ℓ=1(Biℓ (h) − B̃ℓ (h) ŝi)Xt−ℓ and

RT (hT , κT ) = −
X̄0(hT )

∑T−hT
t=1 ξt (hT , κT )√︁

(T − hT )V (hT , κT )
−
π̂X (hT )′

∑T−hT
t=1 x̄t (hT )ξt (hT , κT )√︁

(T − hT )V (hT , κT )

−
π̂Y (hT )′

∑N
i=1

∑T−hT
t=1 ȳit (hT ) (rit (hT ) + ξit (hT , κT ))

N
√︁
(T − hT )V (hT , κT )

The rest of the argument mimics the proof of Lemma B.3. □

Proposition 3.3

Parts (A), (B) and (C) of the proof of Proposition 3.3 in Appendix A.1 are stated in Lemmas B.11, B.12 and B.13
below. The proofs are virtually identical to their counterparts in Proposition 3.1 with some minor differences.
Here we make Assumptions 3.4 and we hold h and p ≥ h fixed as T,N → ∞.

Lemma B.11 (Asymptotic normality of the score).∑T−h
t=1 λ′X∗

t ξt (h, κT )√︁
(T − h)λ′V (h, κT )λ

d−−−−−−→
PκT

N (0, 1).

Proof. The arguments given for Lemma B.1 and auxiliary Lemmas B.4 and B.5 apply with the obvious change
in notation. □

Lemma B.12 (Consistency of the standard error and OLS denominator).

λ′V̂ IV(h)λ
λ′V (h, κT )λ

p
−−−−−−→

PκT

1 and Ĵ IV(h)
p

−−−−−−→
PκT

J .

Proof. The first part follows from arguments analogous to those given for Lemma B.2 and auxiliary Lemmas
B.6 and B.7 (with obvious notational changes). For the second part, note VarN,κT

(
X∗
t X̃t

)
≤ V̄/(T − h) for
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some constant V̄ independent of κT under Assumption 3.4(ii), so that



Ĵ IV(h) − J




 = oPκT
(1) follows

from iterated expectations and Chebyshev’s inequality. □

Lemma B.13 (Negligibility of the remainder).

RT (h, κT )
p

−−−−−−→
PκT

0.

Proof. For any λ ≠ 0(p+1)×1, by the same calculations as in Lemma B.3,∑T−h
t=1 λ′X∗

t

(T − h) = OPκT

(
(T − h)−1/2

)
and

∑T−h
t=1 ξt (h, κT )√︁

(T − h)λ′V (h, κT )λ
= OPκT

(1) .

Since Ĵ IV(h) = J + oPκT (1) by the second part of Lemma B.12, the result follows. □
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B.2 Details of simulation study

Here we complement Section 3.4 with additional details. First, we describe how we simulate the heterogene-
ity. Second, we specify the calibration of our DGPs. Third and last, we present further simulation results.

Simulation of observable and unobservable heterogeneity. A primary feature is the correlation be-
tween si and {βi, γi.δi}.3 We begin by drawing the vector

(si, sγ,i, sδ,i)′ ∼ N
(
13×1, (1 − ρ)I3 + ρ13×3

)
for some ρ ≠ 0. Next, we set a very large L̄ and compute

βiℓ = siβ̆iℓ , γiℓ = sγ,iγ̆iℓ , δiℓ = sδ,i δ̆iℓ ,

where {β̆iℓ , γ̆iℓ , δ̆iℓ }L̄ℓ=0 are obtained by (a) drawing the roots of ARMA polynomials from Beta distributions,
(b) computing their MA(∞) representations, (c) truncating them at L̄, and (d) normalizing them so that∑L̄
ℓ=0 β̆

2
iℓ =

∑L̄
ℓ=0 γ̆

2
iℓ =

∑L̄
ℓ=0 δ̆

2
iℓ = 1.4

To generate time-varying heterogeneity we set sit = si + ζit with ζit ∼ N (0, 1), i.i.d. over units and time,
and independent of si and everything else. This ensures sit remains exogenous with respect to aggregate and
idiosyncratic shocks.

Finally, in the VAR DGP, we set

Biℓ = siB̆iℓ , Ci0 = sγ,i, Di0 = sδ,i.

where {B̆iℓ }L̄ℓ=0 are obtained in the same way as {β̆iℓ }L̄ℓ=0 above.
Our method does not satisfy Assumption 3.3(iv), although responses are bounded with sufficiently high

probability that it does not seem to make a difference.

DGP calibration. In the general DGP, we set ρ = 0.5, and generate {β̆iℓ , γ̆iℓ , δ̆iℓ }L̄ℓ=0 from ARMA(4, 2)
processes with expected roots (0.7, 0.3, 0.2, 0.1) and (0, 0) for β̆iℓ , (0.7, 0.2, 0.1,−0.2) and (0.2,−0.2) for
γ̆iℓ , and (0.9, 0.3, 0.1, 0.1) and (0.5, 0.2) for δ̆iℓ . We draw each root as Beta(λ̄ν, (1− λ̄)ν) where λ̄ is the mean
listed above and ν = 10, and we truncate polynomials at L̄ = 2T lags.

In the LP-IV case, we use a similar method for {bℓ , cℓ }L̄ℓ=0. We obtain bℓ from an ARMA(1, 1) with roots
0.3 and −0.2, and cℓ from an ARMA(2, 2) with roots (0.4, 0.2) and (0.1,−0.1). We also set a0 = 10 to be

3Instead, μi (and mi in the VAR setup) does not play a big role and we simply draw it as N (0, 1).
4The advantage of this representation is that it separates the scale and persistence. For example, if Xt is white noise with unit

variance conditional on {βiℓ }L̄ℓ=0, the variance of
∑L̄
ℓ=0 βiℓXt−ℓ is

∑L̄
ℓ=0 β

2
iℓ = s2i while the ratio of long-run variance to variance of∑L̄

ℓ=0 βiℓXt−ℓ (a measure of persistence) is (∑L̄
ℓ=0 βiℓ

)2

∑L̄
ℓ=0 β

2
iℓ

=

(∑L̄
ℓ=0 β̆iℓ

)2

∑L̄
ℓ=0 β̆

2
iℓ

,

which does not depend on si .
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safely above standard weak IV thresholds.
Finally, for the VAR DGP, we draw {B̆iℓ }

p

ℓ=0 from an MA(2) with roots (0.8,−0.5) and ν = 10, and we
set {Aℓ }

p

ℓ=1 to an AR(2) with roots (1 − 5/T, 0.5).
The mean and quantiles of responses for each horizon can be seen in Figure B.2.1.
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(d) VAR DGP. βih
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FIGURE B.2.1. Distributions of impulse responses for general and VAR DGPs.

Additional results. Figure B.2.2 presents coverage rates of 90% confidence intervals in the general DGP
withT = 100 for panel LPs onXt (panels (a)-to-(c)) and on sitXt (panels (d)-to-(f)).5 As mentioned in Chap-
ter 3, the estimands are different: LPs on Xt recover the mean impulse response while LPs on sitXt recover
their projection on sit. Yet, the observations we made about inference from Section 3.4 are unchanged. In
particular, t-LAHR inference dominates all the alternatives in delivering correct coverage for the nonpara-
metric panel local projection estimand.

5For panel LPs onXt time effects are excluded from the vector of controls. Otherwise, the estimation and inference procedures
are the same as in Figure 3.1 in Chapter 3.
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(a) LP on Xt . R̄
2 (κ) = 0.99
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(b) LP on Xt . R̄
2 (κ) = 0.66
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(c) LP on Xt . R̄
2 (κ) = 0.33
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(d) LP on sitXt . R̄
2 (κ) = 0.99
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(e) LP on sitXt . R̄
2 (κ) = 0.66
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(f) LP on sitXt . R̄
2 (κ) = 0.33
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FIGURE B.2.2. Coverage rates of 90% confidence intervals for T = 100.
Note: 1W refers to one-way (unit-level) clustering, 2W to two-way clustering, DK98 to Driscoll–Kraay, and t-HR/t-LAHR/t-
HAR to the time-level clustering approaches discussed in the text.
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B.3 A survey of empirical applications

Below, we survey relevant empirical applications by the method used to calculate standard errors. The list
reflects the recent surge in applications (with the oldest paper dated 2018) and includes both published work
and working papers. We have aimed to make the list comprehensive, but it is possible that some might
have been inadvertently omitted. When different methods were used, we favored the one used in the main
specification and the one used in estimation of dynamic effects (non-zero horizons). We classified as one-way
clustering (within units) applications that cluster at a higher level of aggregation than primary units; say, at
the industry (or industry-time) level when units are firms. While allowing for sector-level shocks, these still
rule out economy-wide spatial dependence. See the Introduction for additional details.

By method

Two-way clustering (within units
and time)

Ippolito, Ozdagli, and Perez-Orive (2018), Jeenas (2019), Ottonello and Winberry (2020), Am-
berg, Jansson, Klein, and Rogantini Picco (2022), Palazzo and Yamarthy (2022), Paz (2022), Bel-
lifemine, Couturier, and Jamilov (2023), Cascaldi-Garcia, Vukotić, and Zubairy (2023), Drechsel
(2023), Durante, Ferrando, and Vermeulen (2022), Duval, Furceri, Lee, and Tavares (2023), Fer-
reira, Ostry, and Rogers (2023), González, Nuño, Thaler, and Albrizio (2023), Lakdawala and
Moreland (2023), Singh, Suda, and Zervou (2023), Thürwächter (2023), Zhou (2023), Anderson
and Cesa-Bianchi (2024), Berthold, Cesa-Bianchi, Di Pace, and Haberis (2024), Caglio, Darst,
and Kalemli-Özcan (2024), Camêlo (2024), Gulyas, Meier, and Ryzhenkov (2024), Paranhos
(2024), Lakdawala and Moreland (forthcoming)

Clustering within units Wu (2018), Ozdagli (2018), Crouzet and Mehrotra (2020), Singh, Suda, and Zervou (2022), Al-
brizio, González, and Khametshin (2023), Andersen, Johannesen, Jørgensen, and Peydró (2023),
Camara and Ramirez Venegas (2023), Ghomi (2023), Indarte (2023), Bardóczy, Bornstein, Maggi,
and Salgado (2024), Jeenas (2024), Jeenas and Lagos (2024), Lo Duca, Moccero, and Parlapiano
(2024), Paranhos (2024), Ruzzier (2024)

Driscoll and Kraay (1998)
standard errors

Holm, Paul, and Tischbirek (2021), Bahaj, Foulis, Pinter, and Surico (2022), Cloyne, Ferreira,
Froemel, and Surico (2023), Fagereng, Gulbrandsen, Holm, and Natvik (2023), Gorea, Kryvtsov,
and Kudlyak (2023), Bilal and Känzig (2024), Cao, Hegna, Holm, Juelsrud, König, and Riiser
(2024)

Clustering within time Gürkaynak, Karasoy-Can, and Lee (2022)
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C.1 Data

C.1.1 India – sample selection and validation

This section describes sample selection and validation of the subjective expectations data in detail. For the
most part, it mirrors the analysis in Section 1 in Attanasio and Augsburg (2016). However, we update some
of the criteria used and review additional sample selection decisions needed.

Tables C.1.1 and C.1.2 can be understood as an extended version of Tables 2 and 3 (respectively) reported
in Attanasio and Augsburg (2016).

Table C.1.1 details basic sample selection steps and resulting sample sizes. For instance, we exclude obser-
vations with missing income or at least one reported probability. We also report the number of households
for which either the elicited subjective lower or upper bound on future income is missing, although we do
not exclude these from the final sample.1 We also exclude from the sample some extreme reports of cur-
rent household income under the category “implausible income”, which are likely to correspond to survey
measurement error.2

The total number of unique households drops to 930 and 877 in the first and second rounds, respectively.
Relative to these, we study bunching of the reported probabilities at the 0%, 50% and 100% marks in Table
C.1.2, and note substantial bunching at 50% for the midpoint (especially in the first round).

Keeping only households present in both rounds implies a balanced panel with 789 unique households.
We further drop households who report at least one probability as equal to zero or one or whose elicited
subjective cdf is not strictly monotonic. This further reduces the final sample size to N = 770 households.

1A total of 1,041 households were originally interviewed in the first round. We drop five observations who were asked about
monthly rather than yearly income. In the remaining rows, minor differences with respect to those reported in Attanasio and
Augsburg (2016) are due to slightly different/updated criteria.

2In particular, these correspond to reports outside the range [0.5× rmin, 2× rmax], where rmin and rmax are the reported
lower and upper bound on subjective income distributions (respectively), and are replaced by rA and rC , respectively, if missing.
Unlike in the Colombian data, as reported in Appendix C.1.2, using looser or more strict “cutoffs” does not lead to substantial
changes in sample sizes.
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We present robustness checks keeping those households in Appendix C.4.1.

TABLE C.1.1. India: response rates and sample sizes

Round 1 Round 2

Total number of observations 1036 947
Missing income 2 1
Missing either Min or Max 11 11
Missing at least one probability 22 11
Wrong — direction 3 5
Wrong — violation of monotonicity 9 19
Implausible thresholds 63 2
Implausible income 22 41
Available observations 926 873
Balanced panel (robustness) 789
At least one probability is 0 or 1 9 11
At least two prob. are equal 3 2
Balanced panel (final) 770

Note. “Wrong — direction” refers to households that in a given survey report Pr
(
yt+1 ≥ rC

)
> Pr

(
yt+1 ≥ rB

)
> Pr

(
yt+1 ≥ rA

)
,

among those with no missing probabilities. “Wrong — violation of monotonicity” refers to weak monotonicity violations. “Im-
plausible thresholds” refers to households for which rA, rB or rC is missing, among those who report no missing probabilities,
households for which rB < rA or rC < rB, and households with implausibly large interval differences between rB− rA and rC − rB.
“Implausible income” refers to households that report income outside [0.5× rmin, 2× rmax], where rmin and rmax are replaced
by rA and rC , respectively, if missing.

TABLE C.1.2. India: bunching

Round 1 Round 2

Threshold A (Lower)
0% 6 10
50% 1 20
100% 2 0

Threshold B (Midpoint)
0% 0 0
50% 503 142
100% 2 0

Threshold C (Higher)
0% 0 0
50% 44 102
100% 3 1

Available observations 926 873

Note. The table shows the number of respondents who reported 0%, 50% and 100% probabilities in each survey round.
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C.1.2 Colombia – sample selection and validation

We repeat the same analysis as for the Indian data (Appendix C.1.1) here. Tables C.1.3 and C.1.4 summarize
sample selection decisions and validation of the expectations data and bunching, respectively.

As shown in Table C.1.3, of the original sample of 11,462 households interviewed during the 2002 baseline
survey, 10,743 were re-interviewed in 2003 and 9,463 in 2005/06, of which 9,221 provided information on
household income during the first survey round and 7,517 during the second. The fraction of households
with missing reported probabilities or extreme values household income is also larger than in India.3 Relative
to the analysis for India, here we include an additional step on “missing covariates”, where we exclude a
few households for which covariates used in the main analysis (village, number of income sources and the
proportion of income from farming sources) were missing.

The remaining rows in Table C.1.3 and Table C.1.4 correspond to the validation exercise on the subjective
expectations data, similar to the one performed for India in Appendix C.1.1 and in Attanasio and Augsburg
(2016). The final balanced sample we use in the main analysis has N = 2, 230 unique households, after
excluding those who report probabilities equal to zero or one or answers that violate strict monotonicity of
(subjective) cdf s. We report our main results keeping these observations in Appendix C.4.2. Finally, Tables
C.1.5 and C.1.6 report differences in observable characteristics between households in the final dataset and
those available but excluded at after validation.

Since the subjective expectations data in Colombia has not been used before, we now elaborate on vali-
dation:

• Logical response errors. Table C.1.3 shows that in the first survey round 350 households provided an-
swers that violated monotonicity and 37 provided responses that adhered to monotonicity but were
“inverted”, in that probabilities were non-decreasing, rather than non-increasing.4 These figures im-
ply violations of around 4% of those that gave responses to the probabilities, somewhat higher than in
the Indian context where the logical response error was around 1%, but comparable to other studies.
Dominitz and Manski (1997a), for example, report violations for almost 5% of their sample, and almost
twice that number when including respondents where prompting happened (in that their responses
would have initially been classified as logical response errors, but changed responses after having been
prompted; such prompting was not allowed in either of the contexts considered here).

• Bunching of percentages. Table C.1.4 reports on the extent to which households bunch at the 0%, 50%,
or 100% probability marks for the different thresholds. In the first round, there is substantial bunching
at 0% for the lowest and 100% for the highest thresholds (around 14% of responses, compared to a
negligible amount in India), which suggests some households might not have understood the prompts
correctly or that the elicited expected income range is not accurate. There is also apparent bunching
at 50% for the midpoint, a common feature with subjective probability data also present in the Indian
data. There is a more muted presence of these issues in the second wave data.

3In the Colombian data, using looser or more strict rules for “implausible income” (described in Table C.1.3) leads to sub-
stantially larger and smaller sample sizes, respectively. For instance, using an interval given by [0.2× rmin, 5× rmax] allows us to
keep approximately around 200 additional unique households. Naturally, repeating the analysis with this rather permissive rule
tends to exaggerate the features (nonlinear persistence, skewness, etc) we study.

4Recall that, as described in Figure 4.1, households were asked to report probabilities of the form Pr
(
yt+1 ≥ r

)
.
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Even though these data display a higher degree of logical response errors and bunching than in India,
we conclude that the responses provided in the Colombian data conform for the most part to the basic
probability laws, and seem to suggest substantial coherency and variability, in that most respondents appear
to have understood the instructions and provided thoughtful responses.

TABLE C.1.3. Colombia: response rates and sample sizes

Round 1 Round 2

Total number of observations 10743 9463
Missing income 1522 1946
Missing either Min or Max 1294 958
Missing at least one probability 1361 964
Wrong — direction 37 33
Wrong — violation of monotonicity 350 291
Implausible thresholds 24 21
Implausible income 633 390
Available observations 7262 6295
Missing covariates 38 25
Balanced panel (robustness) 4420
At least one probability is 0 or 1 2005 1434
At least two elicited probabilities are equal 866 600
Balanced panel (final) 2230

Note. “Wrong — direction” refers to households that in a given survey report Pr
(
yt+1 ≥ rC

)
> Pr

(
yt+1 ≥ rB

)
> Pr

(
yt+1 ≥ rA

)
,

among those with no missing probabilities. “Wrong — violation of monotonicity” refers to weak monotonicity violations. “Im-
plausible thresholds” refers to households for which rA, rB or rC is missing, among those who report no missing probabilities,
households for which rB < rA or rC < rB, and households with implausibly large interval differences between rB− rA and rC − rB.
“Implausible income” refers to households that report income outside [0.5× rmin, 2× rmax], where rmin and rmax are replaced
by rA and rC , respectively, if missing.

TABLE C.1.4. Colombia: bunching

Round 1 Round 2

Threshold A (Lower)
0% 1041 1036
50% 712 500
100% 83 23

Threshold B (Midpoint)
0% 201 184
50% 806 762
100% 274 88

Threshold C (Higher)
0% 85 36
50% 549 524
100% 1139 545

Available observations 7262 6295

Note. The table shows the number of respondents who reported 0%, 50% and 100% probabilities in each survey round.
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TABLE C.1.5. Colombia: covariate balance (wave 1)

(0) (1) (0)-(1)
Variable N Mean N Mean

Number of adults 3670 2.73 2230 2.69 0.03
Number of female adults 3670 1.39 2230 1.38 0.01
Number of kids 3670 3.11 2230 3.25 −0.15∗∗∗

Log income 3670 12.74 2230 12.73 0.02
Rural household 3661 0.46 2225 0.45 0.01
Household head:

Age 3657 44.30 2228 43.60 0.70∗∗

Some primary education 3612 0.43 2213 0.45 −0.02
Some secondary education 3612 0.15 2213 0.15 −0.01

Primary source of income:
Laborer/employee 3464 0.29 2107 0.27 0.02
Domestic employee 3464 0.06 2107 0.05 0.00
Day laborer 3464 0.21 2107 0.23 −0.02
Self-employment 3464 0.39 2107 0.38 0.00
Partner in farm/plot 3464 0.06 2107 0.07 −0.01

Proportion of regular income 3664 0.79 2230 0.79 0.00
Health shocks 3670 0.13 2230 0.12 0.01
Other shocks 3670 0.14 2230 0.13 0.01

Note. (1) refers to observations in the final sample and (0) to available observations excluded from the final sample (just before
“Balanced panel (robustness)” in Table C.1.3). First wave only. Robust standard errors; ***=.01, **=.05, *=.1.

TABLE C.1.6. Colombia: covariate balance (wave 2)

(0) (1) (0)-(1)
Variable N Mean N Mean

Number of adults 3118 2.80 2230 2.69 0.11∗∗∗

Number of female adults 3118 1.43 2230 1.38 0.05∗∗

Number of kids 3118 3.18 2230 3.25 −0.07
Log income 3118 12.73 2230 12.76 −0.02
Rural household 3106 0.47 2225 0.45 0.02
Household head:

Age 3096 46.42 2216 45.39 1.03∗∗∗

Some primary education 3027 0.45 2165 0.45 0.01
Some secondary education 3027 0.15 2165 0.18 −0.03∗∗∗

Primary source of income:
Laborer/employee 2990 0.31 2162 0.32 −0.01
Domestic employee 2990 0.05 2162 0.04 0.01∗∗

Day laborer 2990 0.26 2162 0.26 0.00
Self-employment 2990 0.32 2162 0.32 0.00
Partner in farm/plot 2990 0.06 2162 0.06 0.00

Proportion of regular income 3115 0.90 2230 0.91 −0.02∗∗∗

Health shocks 3118 0.15 2230 0.13 0.02∗

Other shocks 3118 0.22 2230 0.18 0.04∗∗∗

Note. (1) refers to observations in the final sample and (0) to available observations excluded from the final sample (just before
“Balanced panel (robustness)” in Table C.1.3). Second wave only. Robust standard errors; ***=.01, **=.05, *=.1.
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C.2 Methodological appendix

Recall the flexible model in equation (4.9), which we reproduce below for convenience:

ℓjit = β0(rjit) + β1(rjit)ψ
(
yit

)
+ β2(rjit)ηi + εjit . (C.2.1)

We now provide further details on parameterization (Section C.2.1), estimation (Sections C.2.2 and C.2.3)
and implementation (Section C.2.4).

C.2.1 Specification details

We view model (C.2.1) as a sequence of approximating parameter spaces — or sieves — for the nonparametric
model in (4.3)-(4.4); see Chen (2007) for a technical review of the method of sieves.

In particular, we parameterize model (C.2.1) as

ℓjit =

K0∑︁
τ=1

β0,τhτ (rjit) +
K1∑︁
τ=1

Ky∑︁
κ=1

β1,τ,κhτ (rjit)gκ(yit) +
K2∑︁
τ=1

β2,τhτ (rjit)ηi + εjit , (C.2.2)

where gκ(y) are Hermite polymomials (we omit the constant term, i.e., g1 is linear in y) and hτ (r) are basis
functions of natural cubic splines, with Ks knots (Ks ≥ 2) for s = {0, 1, 2}.5 For the ease of notation, we
use L instead of Ks in Chapter 4, and explicitly refer to β0(·), β1(·) and/or β2(·). We normalize β0,1 = 0 and
β2,1 = 1 to accommodate the level and scale of the fixed effects ηi. This implies there areK0 +K1Ky +K2 − 2
target parameters in model (C.2.3). The baseline specification we use for nonlinear models in Sections 4.5.3
and 4.5.4 sets K0 = K1 = 3, Ky = 1 and K2 = 1 (additive fixed effects) or K2 = 2 (interacted fixed effects).

It is often useful to rewrite (C.2.3) in vector notation. If h1:Ks
(r) is used for to indicate the 1 × Ks array

obtained by horizontal concatenation of the elements in {hτ (r)}
KS

τ=1, let us define

Djit = (h2:K0
(rjit), h1:K1

(rjit)g1(yit), . . . , h1:K1
(rjit)gKy

(yit))′

β0,1 = (β0,2:K0
, β1,1:K1,1, . . . , β1,1:K1,Ky

)′,

and similarly Hjit = h2:K2
(rjit)′ and β2 = β′2,2:K2

. We then stack observations (t, j) vertically for each unit to

5Cubic natural splines are piece-wise cubic polynomials that are twice continuously differentiable and restricted to be linear
beyond the boundary knots. Differentiability is crucial to compute densities and quantile-based measures of nonlinear persistence,
as in (4.14). In particular, let τk for k ∈ {1, . . . , Ks} index the knots in increasing order, which we place at the k/(Ks+1)th quantiles
of the empirical distribution of rjit . The following Ks basis functions can be used to represent the spline model:[

1, rjit , d1 (rjit) − dKs−1 (rjit), . . . , dKs−2 (rjit) − dKs−1 (rjit)
]
,

so that Ks = 2 corresponds to a linear spline, and for Ks > 2 we have

dk (r) =

(
r − τk

)3
1
{
r ≥ τk

}
−

(
r − τKs

)3
1
{
r ≥ τKs

}
τKs

− τk

for k ∈ {1, . . . , Ks − 2}.
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obtain
ℓi = Diβ0,1 +

(
1TJ +Hiβ2

)
ηi + εi, (C.2.3)

where 1A is a vector of ones of size A and where ℓi = (ℓ1i1, ℓ2i1, ℓ3i1, ℓ1i2, ℓ2i2, ℓ3i2)′ and so on.

C.2.2 Estimation: additive fixed effects

Model (C.2.3) is then a series regression model on the sequence of parameter sets defined by (K0,1,2, Ky),
with the additional twist that ηi is unobserved.

When ηi enters additively (set K2 = 1), given the conditional mean assumption E
[
εi
��ri, yi, ηi] = 0, the

model in (C.2.3) is a static fixed-effects regression that can be estimated using the within-group estimator.
In other words, let ℓ̃jit = ℓjit − (TJ )−1 ∑

(j,t) ℓjit denote variables in deviations with respect to means (recall
that T = 2 and J = 3 here) and use ℓ̃i for the corresponding vectors. Equation (C.2.3) then becomes
ℓ̃i = D̃iβ0,1 + ε̃i and an estimate of β0,1 can be obtained via least squares.

Penalization. When considering models where (K0, K1, Ky) grow large, regularized estimators might be
attractive. We explore implementations that penalize the nonlinear sieve terms and might prove useful in
richer setups where even more flexible specifications might be feasible. A simple implementation via a ridge
penalty λ > 0 allows us to maintain the simplicity of the estimation method and an explicit solution that
recovers the linear model as λ → ∞.

C.2.3 Estimation: interacted fixed effects

As noted in Section 4.3.5, treating {ηi}ni=1 as parameters to be estimated jointly with β0,1 and β2 results in an
incidental parameters problem that precludes fixed-T consistent estimation. Here we generalize the linear in-
strumental variables (IV) strategy introduced in the main text, and discuss a method-of-moments approach
in greater generality at the end.

Recall that we use ℓ̃jit = ℓjit − ℓ̄i and so on as notation for variables in deviations with respect to means:

ℓ̃jit = D̃jitβ0,1 + H̃jitηiβ2 + ε̃jit ,

ℓ̄i = D̄iβ0,1 + (1 + H̄iβ2)ηi + ε̃i.

We consider the case K2 = 2, so that effectively Hjit = rjit. We look for linear transformations of the model
that do not depend on ηi but still allow us to estimate β2. Note that

Hjit ℓ̄i − H̄iℓjit = Hjit

(
D̄iβ0,1 + (1 + H̄iβ2)ηi + ε̃i

)
− H̄i

(
Djitβ0,1 + (1 +Hjitβ2)ηi + εjit

)
=

(
HjitD̄i − H̄iDjit

)
β0,1 + H̃jitηi +Hjit ε̄i − H̄iεjit ,

where note that the first element in HjitD̄i − H̄iDjit is zero. We solve for the term involving ηi and plug it in
back in the model in deviations,

ℓ̃jit = D̃jitβ0,1 +
(
Hjit ℓ̄i − H̄iℓjit

)
β2 −

(
HjitD̄i + H̄iDjit

)
γ + ξjit (C.2.4)
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where ξjit = ε̃jit − Hjitβ2ε̄i + H̄iβ2εjit and γ = −β0,1β2, a generalization of the simple model considered in
equation (4.19) in Section (4.3.5). We need at least one instrument for Hjit ℓ̄i − H̄iℓjit. Note that

E
[
Hjit ℓ̄i − H̄iℓjit

���ri, yi] = (
HjitD̄i − H̄iDjit

)
β0,1 + H̃jitE

[
ηi
��ri, yi] ,

and thus any predictor of ηi (conditional on the included regressors) is possibly a valid instrument. We thus
consider a set of K0 + K1Ky − 1 instruments given by Zjit = H̃jitD̄i; this corresponds to five instruments in
the baseline specification used in Section 4.5.4. We then propose to estimate (C.2.4) by TSLS.

Note that the restriction γ = −β0,1β2 does not need to be imposed for consistent estimation. If one
is willing to impose the restrictions, this can be done expost via minimum distance estimation or exante via
nonlinear GMM. We briefly explored the latter, which is exposed to similar numerical/convergence problems
as those of the more general nonlinear method-of-moments estimator described below.

A method-of-moments estimator. The IV estimator developed here retains the simplicity and linear-
ity of the within-group estimator even as we move on to more flexible models, and we have found it to be
a reliable approach. A general method-of-moments approach for the parameters in equation (C.2.3) is as
follows.

Let Bi (β2) andQi (β2) denote the generalized between- and within-group transformations, respectively,
defined as

Bi (β2) =
((

1TJ +Hiβ2

)′ (
1TJ +Hiβ2

))−1 (
1TJ +Hiβ2

)′
,

Qi (β2) = ITJ −
(
1TJ +Hiβ2

)
Bi (β2),

where IA is the identity matrix of size A × A. Back to equation (C.2.3), we note that the generalized within-
group residuals are mean independent of the regressors:

E
[
Qi (β2)

(
ℓi −Diβ0,1

) ��ri, yi] = 0.

A nonlinear GMM estimator inspired in Chamberlain (1992) and Arellano and Bonhomme (2012) is then
available exploiting these conditional moment restrictions. In some sense, the IV strategy proposed above is
a transparent way to finding such informative restrictions for the interacted fixed-effects term.

C.2.4 Additional details on implementation

Here we discuss how to we compute the objects of interest after estimation of the model parameters in
equation (4.9) (reproduced here as equation (C.2.1)) and shed light on some additional details beyond those
discussed in Section 4.3.5.

Standardizing the data. When estimating flexible models, we first standardize the data as follows:

r̆jit =
rjit − r̄

σ̄r
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y̆it =
yit − ȳ

σ̄y
,

where x̄ and σ̄x are measures of location and scale for variable x; we use the median and the IQR respectively
in our implementation. This helps standardize the range of variation of the data across units. Importantly,
we need to undo these transformations before reporting the final output: letting q̆it (τ) denote the τth con-
ditional quantile on the standardized data, we need to calculate

qit (τ) = r̄ + σ̄rq̆it (τ).

Estimation in growth rates. In Section 4.3.5, we note that redefining sjit = rjit − yit is equivalent to
estimating predictive distributions for growth rates and argue that this is a convenient transformation. Note
that we are still interested in the range of values of r (or r̆): this entails careful adjustment of the support
grid of conditional distribution functions in implementation. On a related note, the fact that the argument
of the conditional distribution now depends on y has to be taken into account when computing numerical
derivatives below.

Details on computing quantile-based measures of dispersion, skewness and persistence. Given
estimates (β̂′0,1, β̂′2)′, the target summaries in Section 4.3.4 can be computed in three steps:

1. Obtain predicted probabilities.

Given reference conditioning values (ȳ, η̄) (usually a quantile of interest) and for r in a given grid rgrid,
we calculate fitted probabilities p̂ = F̂ (r, ȳ, η̄), which we collect in p̂rgrid. When non-monotonic, we
follow Chernozhukov et al. (2010) in sorting the original estimated curve into a monotone rearranged
one.

2. Recover conditional quantiles.

This involves inverting the fitted conditional distribution function to obtain conditional quantiles for
a given τ, which we denote r̂(τ); see also equation (4.10) in the main text. We resort to interpolation
within p̂rgrid.6

3. Compute target summaries.

Quantile-based measures of dispersion and skewness as in equations (4.12) and (4.13) are then readily
available (note the comment above on standardizing the data). Regarding nonlinear persistence, we
calculate the derivatives in equation (4.15) mumerically. Note that this requires recalculating predicted
probabilities along the lines of step 1, so as to condition on r̂(τ).

6Alternative methods are bracketing or root-finding alogorithms, which solve for r̂(τ) in τ = F̂ (r̂(τ), ȳ, η̄). These are model-
based approaches that impose the (estimated) logit structure, which is problematic when it is non-monotonic. In fact, these
algorithms impose implicit rearrangement methods that are starting-value dependent.
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C.3 Documenting heterogeneity

Note. Reference values for η̄ correspond to its 10th, 50th and 90th percentiles, respectively. See Figure C.3.3 for pointwise confi-
dence bands.

FIGURE C.3.1. India — nonlinear persistence at different reference values of ηi
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Note. Reference values for η̄ correspond to its 10th, 50th and 90th percentiles, respectively. See Figure C.3.4 for pointwise confi-
dence bands.

FIGURE C.3.2. Colombia — nonlinear persistence at different reference values of ηi

C.3.1 Confidence bands
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Note. Reference values for η̄ correspond to its 10th, 50th and 90th percentiles, respectively. 90% pointwise confidence bands; block
bootstrap with 1000 repetitions.

FIGURE C.3.3. India — nonlinear persistence (with confidence bands)
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Note. Reference values for η̄ correspond to its 10th, 50th and 90th percentiles, respectively.

FIGURE C.3.4. Colombia — nonlinear persistence (with confidence bands)
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C.4 Robustness: sample selection and modeling choices

In Sections C.4.1 and C.4.2, we report counterparts to (a subset of) the empirical results reported in the
main text when including elicited probabilities that equal zero or one (applying the transformation below)
and those which violate strict monotonicity (two reported cumulative probabilities are equal for the same
household). This entails minimal sample selection in the Indian data (see Table C.1.1) but is substantial in
the Colombian data (see Table C.1.3). We find very similar results in both qualitative and quantitative terms
for our target summary objects in both datasets. This is remarkable for the Colombian data, where using
these transformations essentially imply doubling the sample size (from 2,230 to 4,420 unique households)
and introducing substantial additional elicitation error (as measured by residual variances).

Keeping zero/one probabilities The logit transformation in equation (4.2) in Section 4.3 restricts ob-
served, elicited probabilities pjit to lie strictly between zero and one. We suggest here an alternative transfor-
mation — which still maps these probabilities to the real line — that allows us to keep these observations:

ℓjit = logit
(
p̌jit

)
, p̌jit =

pjit + 1
2m

1 + J
2m

. (C.4.1)

This is a generalization of the modified logit transformation of Cox and Snell (1970, p. 32) for binary data.
In a context where pjit are noisy measurements due to possible rounding and randomness in the elicitation
process, the adjustment m can be interpreted as a measure of the accuracy of the elicitation such that m =

O
(
1/σ2

ε

)
. In particular, elicitations errors εjit in (4.3) can be seen as capturing sampling uncertainty from a

hypothetical random sample of sizem; see Arellano, Bonhomme, De Vera, Hospido, and Wei (2022, Online
Appendix F) for additional details in the context of subjective expectations data and a Bayesian interpretation
of (C.4.1).7

7Below, we set the regularization parameter m in equation (C.4.1) to m = 10 in both cases. Other reasonable choices lead to
the same conclusions.
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C.4.1 India: larger samples

No FE FE

ρ 0.96 0.93
(0.94, 0.99) (0.90, 0.96)

σ 0.58 0.33
(0.53, 0.62) (0.31, 0.35)

IQR0.75 1.26 0.72
(1.17, 1.36) (0.67, 0.77)

IQR0.90 2.53 1.44
(2.34, 2.72) (1.35, 1.53)

σ2
η 0.18

(0.15, 0.23)
σ2
η village 0.12

(0.11, 0.16)
σ2
ε 1.05 0.98

(1.03, 1.08) (0.95, 1.02)
Note. The table reports results for the linear model in (4.7) using the data for India. Results cor-
respond to the alternative sample described in Section C.4. Specifications include survey round
dummies. In parenthesis we report 90% block bootstrap CI.

TABLE C.4.1. India — linear model (robustness sample)

yp10 yp50 yp90

IQR0.75 0.83 0.63 0.54
(0.75, 0.93) (0.57, 0.66) (0.48, 0.58)

IQR0.90 1.69 1.29 1.10
(1.56, 1.91) (1.21, 1.37) (0.99, 1.21)

SK0.90 −0.04 −0.11 −0.15
(−0.16, 0.04) (−0.21,−0.05) (−0.29,−0.05)

ρτ0.25 0.97 1.02 1.04
(0.92, 1.04) (0.98, 1.06) (0.99, 1.08)

ρτ0.50 0.81 0.95 1.00
(0.74, 0.87) (0.92, 0.98) (0.97, 1.02)

ρτ0.75 0.59 0.86 0.95
(0.42, 0.72) (0.82, 0.89) (0.91, 0.98)

σ2
η 0.19

(0.16, 0.23)
σ2
η village 0.11

(0.11, 0.16)
σ2
ε 0.95

(0.91, 0.99)
Note. The table reports results for India for the flexible model with additive fixed effects in (4.20). Results correspond to the
alternative sample described in Section C.4. Specifications include survey round dummies. In parenthesis we report 90% block
bootstrap CI.

TABLE C.4.2. India — flexible model (additive fixed effects)
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C.4.2 Colombia: larger samples

No FE FE

ρ 0.72 0.51
(0.69, 0.75) (0.48, 0.54)

σ 0.82 0.56
(0.80, 0.85) (0.55, 0.58)

IQR0.75 1.80 1.24
(1.75, 1.86) (1.21, 1.27)

IQR0.90 3.61 2.48
(3.49, 3.72) (2.41, 2.55)

σ2
η 0.54

(0.51, 0.58)
σ2
η village 0.10

(0.10, 0.13)
σ2
ε 1.75 1.34

(1.71, 1.78) (1.30, 1.37)
Note. The table reports results for the linear model in (4.7) using the data for Colombia. Re-
sults correspond to the alternative sample described in Section C.4. Specifications include survey
round and month and interview dummies. In parenthesis we report 90% block bootstrap CI.

TABLE C.4.3. Colombia — linear model (robustness sample)

yp10 yp50 yp90

IQR0.75 1.36 1.18 1.10
(1.31, 1.42) (1.14, 1.21) (1.06, 1.14)

IQR0.90 2.67 2.37 2.22
(2.57, 2.78) (2.31, 2.44) (2.15, 2.29)

SK0.90 0.08 0.05 0.01
(0.04, 0.13) (0.01, 0.08) (−0.02, 0.04)

ρτ0.25 0.60 0.63 0.65
(0.55, 0.64) (0.59, 0.67) (0.58, 0.70)

ρτ0.50 0.45 0.60 0.63
(0.41, 0.51) (0.56, 0.63) (0.59, 0.66)

ρτ0.75 0.34 0.50 0.59
(0.28, 0.40) (0.46, 0.53) (0.55, 0.62)

σ2
η 0.53

(0.50, 0.57)
σ2
η village 0.10

(0.10, 0.13)
σ2
ε 1.33

(1.29, 1.36)
Note. The table reports results for Colombia for the flexible model with additive fixed effects in (4.20). Results correspond to
the alternative sample described in Section C.4. Specifications include survey round and month and interview dummies. In
parenthesis we report 90% block bootstrap CI.

TABLE C.4.4. Colombia — flexible model (additive fixed effects)
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C.5 Questionnaires

Figure C.5.1 reports the original questionnaire for India. The questions on elicitation of subjective expecta-
tions follow those on income and income components and correspond to section 6 of the household survey.8

Figure C.5.2 shows the original questionnaire for Colombia (in Spanish).

7. Imagine that you have a very good year, every member of 
working age in the household managed to have work, and 
there were no droughts or anything the like. What would be 
the maximum amount of income your household would 
receive in such a situation in one year? 

Y (Rs.) 

8. Now imagine the total opposite: the harvest is bad, animals 
get sick, finding work is not possible. What would be the 
yearly income of your household in such a situation? 

X (Rs.) 

INTERVIEWER: Calculate the following values: 

Expected Income (threshold B): B = (X+Y)/2 

Threshold A: A = (B+X)/2 

Threshold C: C = (B+Y)/2 

INTERVIEWER: Explain the rainfall question to the respondent (See extra Sheet) 

R.1 So, what do you think how likely it is that it will rain tomorrow? 

R.2 So, what do you think how likely it is that it will rain within the coming week?  

R.3 So, what do you think how likely it is that it will rain within the coming month? 

9. How likely do you think it is that your yearly income in the coming year will be 
higher than _________(A) Rupees? 

10. How likely do you think it is that your yearly income in the coming year will be 
higher than _________(B) Rupees? 

12. How likely do you think it is that your yearly income in the coming year will be 
higher than _________(C) Rupees? 

INTERVIEWER: Add all income sources in the shaded column to calculate yearly income of the household. 

5. READ OUT CALCULATED YEARLY INCOME and ask: Is this 
a typical yearly income for your household? 

1. yes
2. no, it is higher than typical
3. no, it is lower

6. IF NO: What would be a typical yearly income for your 
household? 

(Rs.) 

IF ONLY INCOME SOURCE IS FROM DAIRY ACTIVITY (7) >> GO TO SECTION 7. ELSE, go on to question 7. 

FIGURE C.5.1. India — questionnaire

8To be precise, this is the second-round version of the questionnaire. In the first-round version, five households were instead
asked about monthly — rather than yearly — income. Importantly, the wording of the questions is unchanged, and the data
included an identifier for these households, which are not part of the original sample in Table C.1.1.
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631
¿El mes pasado recibió algún ingreso por
concepto de trabajo, diferente al de su
ocupación u oficio principal?

ENTREVISTADORA: Verifique la edad de __________ en 604 y marque
                                   de acuerdo con la respuesta registrada.

10 a 24 años

25 y más años

1

2

 635632

633
¿El mes pasado recibió dinero por concepto de
pensión de jubilación, sustitución pensional,
invalidez o vejez?
¿El mes pasado recibió dinero por concepto
de arriendos o intereses?634

635
¿El mes pasado recibió dinero por otras fuentes
diferentes al trabajo? (por ejemplo, venta o
empeño de un bien)

ENTREVISTADORA: Verifique en el "Reporte de Seguimiento".
La persona objeto de este módulo es:

Jefe del núcleo familiar seleccionado 1

2

3  E
636 Cónyuge del jefe del núcleo familiar

seleccionado
Otro

637
ENTREVISTADORA: ¿La persona objeto de este módulo debe aplicar "expectativas de ingreso"?

Tenga en cuenta que esta sección, aplica sólo a una persona del núcleo
familiar seleccionado. E







"Ahora vamos a realizar un pequeño juego que consiste en lo siguiente: Aquí tenemos una regla que tiene una
escala de 0 a 100. Queremos que la utilice para indicarnos qué tan seguro está Usted, de que alguna situación se
va a presentar en el futuro, por ejemplo, si le preguntamos: ¿Qué tan seguro está de que mañana va a llover?.
1.  Si Usted esta totalmente seguro que va a llover nos indica el punto 100 de la regla.
2.  Si Usted está totalmente seguro de que no va a llover nos indica el punto 0 de la regla.
3.  Y si Usted no está seguro de lo que va a ocurrir, pero cree que hay una alta probabilidad de que llueva se
     colocaría más cerca del 100 que del 0.
4.  Y si cree que hay una alta probabilidad que no va a llover se colocaría más cerca del 0 que del 100.

638

Ahora suponga que el próximo mes los miembros de su familia que
quieren trabajar, consiguen un trabajo bueno. (Si tiene parcela, decir
también: Imagine además que Usted obtiene una buena cosecha).
¿Cuánto dinero cree que ganaría o le entraría en ese mes al hogar?

$
NS/NR 

X

639

Suponga ahora todo lo contrario, que tienen muy poco trabajo el
próximo mes (Si tiene parcela, decir también: Suponga que la cosecha
salió mal), y que sólo viven de eso y de lo que la gente les da, y que la
gente les da muy poco.  ¿Cuánto dinero cree que recibiría en ese mes
el hogar?

Y
$

NS/NR 

Z $
ENTREVISTADORA: Promedie las dos posibilidades (X y Y), y
                                   calcule el ingreso esperado del hogar.
                                 Mencione la cifra al entrevistado, diciendo
                                 "entonces el ingreso promedio sería" (Z).


(X+Y)/2640

Si
No

1

2

SEI; ARD-234 /DD-06/JUL-03

ENTREVISTADORA: Lea a su entrevistad@ el siguiente texto:

E

E

ENTREVISTADORA: Calcule el  valor de ingreso M, a partir
                                   del ingreso promedio.



P

M $

$

(Z+X)/2

(Z+Y)/2

641

642 ENTREVISTADORA: Calcule el  valor de ingreso P, a partir
                                   del ingreso promedio.

D. EXPECTATIVAS DE INGRESO

"Ahora muéstreme en la regla qué tan seguro está de que mañana va a llover" (Que él indique con un lápiz).

643

Ahora vamos a jugar con la regla. Usted debe responder
señalándome un punto en la regla, y la pregunta es la siguiente:
¿Qué tan seguro está Usted que el ingreso del hogar va a estar
entre $_________ y $_________?

Entre X y M Entre X y Z Entre X y P

ENTREVISTADORA: Compruebe que la respuesta de C sea mayor que la de B y la de B mayor que la de A.
Si no es así vuelva y repítale el ejemplo de la lluvia.

ENTREVISTADORA: Si no entiende, repítale el ejemplo
                                   de la lluvia.

A B C

% % %

4

 ¿Cuánto recibió? $Si 1 2No

 ¿Cuánto recibió? $Si 1 2No

 ¿Cuánto recibió? $Si 1 2No

 ¿Cuánto recibió? $Si 1 2No

No. MÓDULO 6FORMULARIO TIPO 1

1256556123

FIGURE C.5.2. Colombia — questionnaire
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