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Abstract

Standard errors need to be adjusted down when the sample is a large fraction

of the population of interest (a finite population setup). I consider the empirically

relevant case where a finite population coexists with a measurement problem, in

that the features of interest are not necessarily observable even if the entire pop-

ulation is sampled. I show that conventional standard errors remain generally

conservative in this context and propose Finite Population Corrections (FPCs)

that guarantee non-conservative inference when repeated measurements are

available. FPCs rely on weak dependence across measurements and are very

simple to implement. I apply these methods to two empirical settings where

uncertainty has been previously understood in different ways: predicting lethal

encounters with police using data on all U.S. police departments, and studying

firm misallocation with a census of large Indonesian firms. Finite-population

inference leads to confidence intervals that are up to 50% shorter in the former

and illustrates the need to account for measurement uncertainty in the latter.
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1 Introduction

Empirical researchers are often interested in features of finite populations — those

for which all or a non-negligible number of units are sampled: all schools in a

district, most households in a village, nearly universal records on firms or workers.

When these features are directly observable upon sampling, the usual standard

error formulas need to be adjusted down to reflect this abundance of information.1

This is, however, of limited applicability in many relevant problems: school quality

might not be directly observable even if all schools of reference were to be sampled;

instead, we might only have access to imperfect measurements such as average

test scores for different student cohorts. Similar ideas apply to learning about

household-level preferences or about the frictions firms face in a particular sector.

In this paper, I propose new methods to assess estimation uncertainty in a frame-

work where a finite population coexists with a measurement problem — where

even if we observe the entire population, we may only have access to a few noisy

measurements of the underlying attributes of interest. I show that conventional

inference methods remain generally conservative in this context and propose Fi-

nite Population Corrections (FPCs) that lead to asymptotically correct inference

for any sample-to-population fraction. FPCs rely on weak dependence across

measurements and are very simple to implement.

I apply these methods to two empirical settings where uncertainty has been

previously understood in different ways: predicting lethal encounters with police

using data on all U.S. police departments, and studying firm misallocation with

a census of large Indonesian firms. Inference is of primary interest in the former,

and I show that FPCs lead to up to 50% shorter confidence intervals. Inference

is usually second-order in the latter, where full-population datasets are common.

When a measurement problem is nonetheless present, finite-population confidence

intervals correctly reflect the dominant source of estimation uncertainty.

1Such results belong to a long-standing statistical literature; Cochran (1977) is a classical reference.

The earlier work was done in the context of survey sampling, see for instance Neyman (1934), Hansen

and Hurwitz (1943) and Horvitz and Thompson (1952).
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Setup and scope for empirical work. The methods in this paper are relevant for

applications that share two key ingredients. First, there is a well-defined population

of units characterized by a set of characteristics — or attributes — and the object

of interest is defined over this population: say, an average response coefficient or a

regression parameter. 2 The analyst has access to a (random) sample of units from

this population. Using of a sample to learn about a population introduces sampling

uncertainty; the extent of this is determined by the sample-to-population fraction

f ∈ [0, 1]. Here f = 1 captures full population setups, such as with data on all U.S.

counties, whereas f = 0 is appropriate for CPS data, where it is reasonable to view

it as a random sample from a much larger, “infinite” population.

Second, some of these attributes might remain unobserved even if a given unit

is sampled; instead, a few error-ridden measurements of the underlying attributes

are available. These are then used to estimate the parameter of interest, introducing

measurement uncertainty. We will require that these are “good measurements” in

the sense that it is possible to construct unbiased estimators of the underlying

attributes. For this purpose, I consider a general class of measurement models that

are affine in the underlying attributes of interest, analogous to random coefficient

models in the panel data literature (Chamberlain, 1992; Arellano and Bonhomme,

2012). This is a different setup from the one considered in experimental analyses

in finite populations, where uncertainty is induced by treatment randomization

(Neyman, 1923/1990; Abadie, Athey, Imbens, and Wooldridge, 2020). My setup is

in the model-based tradition where policy variation is not exploited for inference.

These two ingredients are prominent in the two empirical applications I consider.

The first one is based on Montiel-Olea, O’Flaherty, and Sethi (2021), who draw

from records on all local police departments in the U.S. to study the determinants

of police use of deadly force and conduct prediction exercises involving these

agencies. Some of these predictors are directly observable (such as regional laws),

while others are not (such as departmental culture). The authors use a panel

2Sometimes it is not obvious whether one should adopt a finite-population perspective or treat the

sample as drawn from a larger population that includes new, hypothetical units. This might be a useful

conceptual exercise, see the discussion in Section 2 (Remark 1). The methods in this paper allow to

quantify and decompose estimation uncertainty under both approaches.
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of lethal encounters over 2013–2018 and a measurement system analogous to a

heterogeneous Poisson model to disentangle their separate effects.

The second is in the spirit of a large literature following Hsieh and Klenow (2009).

In a nutshell, firms face frictions that prevent them from choosing their inputs opti-

mally, and these translate into firm-specific “wedges” in marginal products relative

to the optimal allocation. Interest is here on investigating how these frictions relate

to firm characteristics or on quantifying their cross-sectional dispersion, which is

directly informative on aggregate TFP losses from misallocation. Measuring these

underlying frictions is challenging: I use census panel data for manufacturing

Indonesian firms from Peters (2020) and consider a persistent–transitory (fixed-

effects) decomposition, following recent approaches in the literature (David and

Venkateswaran, 2019; Chen, Restuccia, and Santaeulàlia-Llopis, 2022; Adamopou-

los, Brandt, Leight, and Restuccia, 2022; Nigmatulina, 2023).

More generally, the analysis here is relevant for a large class of problems involving

latent variables, fixed effects, factor models and random coefficient models.3 Note

that repeated measurements need not have a clear time ordering as in panel data;

measurements over space or parallel measurements are also common. For instance,

Kline et al. (2022) are interested in studying firm-level discrimination for a finite

population of 108 Fortune 500 U.S. firms and have job-level repeated measurements

for each company.

3Additional examples include heterogeneous earnings profiles (Guvenen, 2009), school or teacher

value-added models (Gilraine, Gu, and McMillan, 2022; Hahn, Singleton, and Yildiz, 2023), modelling

skill and scalability in mutual funds (Barras, Gagliardini, and Scaillet, 2022), microforecasting (Liu,

Moon, and Schorfheide, 2020, 2023; Giacomini, Lee, and Sarpietro, 2023), state or country-level regres-

sions (Villacorta, 2021), total factor productivity estimation (Klette, 1999; Combes, Duranton, Gobillon,

Puga, and Roux, 2012), risk-sharing in village economies (Townsend, 1994; Schulhofer-Wohl, 2011;

Chiappori, Samphantharak, Schulhofer-Wohl, and Townsend, 2014), firm-level discrimination audits

(Kline, Rose, and Walters, 2022), meta-analyses (Meager, 2022), heterogeneity in returns to technology

adoption in developing countries (Suri, 2011), schooling models as in Magnac, Pistolesi, and Roux (2018)

or the difference-in-differences model in Bonhomme and Sauder (2011), elicitation of preferences and

risk attitudes (Barsky, Juster, Kimball, and Shapiro, 1997; Andreoni and Samuelson, 2006; Ahn, Choi,

Gale, and Kariv, 2014), low-rank models for time-varying treatment effects (Bonhomme and Denis,

2024), and many others.
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Finite-population inference. I propose consistent variance estimators for a fixed

number of measurements in a method-of-moments framework that incorporates

these two ingredients. The parameters of interest include finite-population es-

timands, defined by linear instrumental-variable moment conditions for the at-

tributes of interest, and common parameters of the measurement system.4

The proposed finite-population variance estimator is constructed such that it

accounts for sampling-based and measurement-based uncertainty in the right pro-

portions, that is, it is indexed by f ∈ [0, 1]. In essence, it exploits a parallel between

the measurement–sampling decomposition in the asymptotic variance of the esti-

mator and a (generalized) within–between variance decomposition. The “within”

part embeds the notion of measurement uncertainty: residual variation around the

underlying latent attributes of interest. The “between” part captures the idea of

sampling uncertainty: differences between sample and population attributes. The

finite-population variance estimator weights the latter by (1 − f ); this generalizes

the standard Finite Population Correction (FPC) to problems where the features of

interest are not directly observable upon sampling.

The within-between decomposition requires limited dependence across mea-

surements. This is the main assumption in the paper and the point of departure

relative to conventional variance estimators. I specify weak dependence as lin-

ear restrictions on the covariance matrix of the measurement errors, such as those

implied by m-dependent processes.5 In other words, measurement errors should

be not too dependent relative to the number of measurements, and fewer restric-

tions are needed as more measurements become available — a common notion

of weak dependence in the time-series literature. This is also natural to many

problems with repeated measurements; for instance, it is the key assumption in

deconvolution problems, in which one is interested in the distributional character-

istics of latent variables. Importantly, all other elements in the covariance matrix

4I extend the framework to nonlinear transformations of the latent attributes such as variances in

Remark 8. Such objects are relevant in the empirical application in Section 5.2.
5This is a popular approach in minimum-distance estimation of covariance structures, see Arellano

(2003, Chapter 5).
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remain completely unrestricted and free to vary with observable and unobservable

attributes. For instance, in the context of our school quality example, it is rea-

sonable to assume that within variation in average test scores for different cohorts

is uncorrelated, while we allow for dispersion to vary over cohorts and to select

on school quality. The generalization of within-between decompositions to weak

dependence of this form is established by Arellano and Bonhomme (2012) in the

context of estimation of distributional characteristics of random coefficient models.

The resulting variance estimator takes the form of a FPC applied to the conven-

tional “sandwhich” estimator and is very simple to implement: FPCs only require

to inversion of a selection matrix specifying the restrictions on the measurement

part of the model. A drawback of the resulting estimator is that is that it is not guar-

anteed to be positive semi-definite in finite samples, although this is not a problem

in the simulations and the empirical illustrations in this paper. The presence of

other observable attributes can be exploited to construct conservative estimators

following similar proposals in the design-based literature (Fogarty, 2018; Abadie

et al., 2020).

The asymptotic approximations in this paper are established for a sequence of

growing finite populations such that the limiting sample-to-population fraction

remains representative of the sampling framework, an embedding often referred

to as in the literature as finite-population asymptotics (Lehmann, 1975; Li and

Ding, 2017; Abadie et al., 2020; Xu, 2021), and for a fixed number of measurements.

Finite-population inference via FPCs is correct in large samples for any f ∈ [0, 1],

unlike conventional inference methods which implicitly set f = 0 and remain gen-

erally conservative. An exception are common parameters: intuitively, uncertainty

about the measurement system itself should not depend on f , since the measure-

ment problem is present regardless of the sampling framework. The same is true

for finite-population estimands in the absence of heterogeneity in the underlying

attributes of interest. Conversely, FPCs tend to be larger the more dispersed pop-

ulation attributes are, the less noise there is in the measurement system and the

more measurements are available.

I complement these theoretical results with simulations for realistic designs to

study the finite-sample properties of the proposed FPCs. The results show that

6



finite-population inference maintains correct (nominal) coverage even for relatively

small sample sizes (N = 200) and for different sample-to-population fractions,

while the coverage probability for conventional confidence intervals is often one.

The designs are calibrated to match reasonable signal-to-noise ratios (in the sense

of relative weights of sampling and measurement components), which map to the

relative width of conventional and finite-population confidence intervals in line

with the discussion above.

Empirical illustrations. The framework developed in this paper has practical im-

plications for a wide range of applications. To illustrate this, I revisit two very dif-

ferent empirical problems: a prediction exercise where uncertainty quantification

is first-order and an investigation of firm-level frictions and misallocation, where

empirical moments are often reported without measures of estimation uncertainty.

In the first exercise, I apply Finite Population Corrections to the results in

Montiel-Olea et al. (2021). Here the population of interest are local U.S. police

departments, and the data comes from the Law Enforcement Agency Identifiers

Crosswalk dataset (LEAIC), which compiles information on all state and local law

enforcement agencies; here we set f = 1. The final dataset contains 7,585 agen-

cies and information on the number of yearly lethal encounters with police and

a number of covariates including local demographics, the number of officers per

thousand inhabitants and state-level dummies on the severity of laws regarding

officer misconduct. The authors posit an exponential model and obtain coeffi-

cient estimates via nonlinear least squares. Next, they propose a method to obtain

predictions for counterfactual-like questions of the form “what would happen to

number of lethal encounters if all 10 largest agencies had the department-specific

attributes of the Chicago Police Department?”

Uncertainty is here of primary interest — more so than point prediction or statisti-

cal significance — and thus the authors directly report sampling-based confidence

intervals (CIs). Finite-population inference instead identifies the right source of

estimation uncertainty for this problem: the fact we only observed error-ridden

measures of agency-specific baseline police violence. Applying Finite Population

Corrections, I find that the conventional variance estimators were overly pessimistic
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about prediction uncertainty: standard errors for the projection coefficients are be-

tween 20% and 60% smaller, and this in turn leads to shorter prediction intervals.

For instance, the conventional 90% CI for the question above is (545, 700); the finite-

population 90% CI is (565, 667). From a policy perspective, the finite-population CI

now excludes the realized number of lethal encounters during this period, whereas

the effect remains ambiguous when treating the data as a negligible sample from a

hypothetical population of U.S. local police departments.

In the second exercise, I apply these methods to a measurement exercise con-

cerned with labor “wedges” for manufacturing Indonesian (formal) firms. I fol-

low Peters (2020), who uses census data from Statistik Industri and focuses on

young firms. The final dataset is an unbalanced yearly panel covering 17, 000 firms

that enter the market over 1991–1999. Following recent contributions (David and

Venkateswaran, 2019; Chen et al., 2022; Adamopoulos et al., 2022; Nigmatulina,

2023), I allow for measurement error in firm-level marginal revenue products of

labor and focus on fixed-effect measures of wedges. I then explore the relationship

between firm-level labor wedges and firm size upon entry, which might be sug-

gestive of size-dependent policies and regulations (Guner, Ventura, and Yi, 2008).

Similar exercises are commonplace in the literature (Yeh, Macaluso, and Hersh-

bein, 2022; Gorodnichenko, Revoltella, Svejnar, and Weiss, 2021). I also extend the

framework to cover wedge dispersion statistics, an often reported measure of “al-

locative efficiency” that can be mapped to the TFP loss from misallocation (Hsieh

and Klenow, 2009).

Finite-population inference provides again a clear recipe for uncertainty quan-

tification: despite having data on all firms we are interested in, measurement-based

uncertainty needs to be accounted for. The results point at a very imprecise rela-

tionship between firm size and labor wedges for smaller firms — even more so

if one were to calculate confidence intervals as if the sample was drawn from a

superpopulation of firms. The emphasis on measurement problems also has im-

plications for allocative efficiency calculations: fixed-effects measures revise down

the TFP losses from misallocation of labor to about 15% from a (biased) baseline of

around 20% on average across different size groups. Finite-population confidence

intervals also suggest that this difference is statistically meaningful.
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In essence, finite-population inference provides a unified approach to uncer-

tainty quantification in problems where estimation uncertainty has been previously

understood in very different ways.

Related literature. This paper contributes to various strands of the literature.

First, it relates to the longstanding statistics literature on finite population anal-

ysis (Neyman, 1934; Hansen and Hurwitz, 1943; Horvitz and Thompson, 1952;

Hájek, 1960; Erdős and Rényi, 1959; Li and Ding, 2017), which laid out the foun-

dations of survey sampling and developed limit theorems under simple random

sampling for growing sequences of finite populations; see Lehmann (1975) for a

review. The focus of this literature has been on inference under sampling-based

uncertainty, whereas I consider problems where sampling and measurement un-

certainty coexist.

The discussion of measurement issues in this literature has revolved around the

biases introduced by different forms of survey errors on estimation and prediction,

see for instance Hansen, Hurwitz, and Bershad (1961) for an early contribution

on (across units) interviewer bias. The literature has also noted the validity of

standard variance formulas that ignore the presence of (classical) measurement

error altogether as long as the Finite Population Correction is negligible, see for

instance Fuller (1995). Detailed treatments of measurement issues can be found

in Cochran (1977, Chapter 13) and Mukhopadhyay (2001, Chapter 7). My focus

is on inference with unbiased repeated measurements, which I exploit to propose

consistent standard errors for a large class of empirically relevant models.6

Second, this paper relates to the literature on design-based inference, which start-

ing with Neyman (1923/1990) has been traditionally studied in a potential outcomes

finite population context. These are (quasi)experimental setups where a source of

uncertainty arises from randomized treatment assignment. In a context where

both sampling and design uncertainty coexist, Neyman (1923/1990) noted the con-

servativeness of conventional variance estimators in a binary treatment setting.

6The use of the term “measurement error” in my setup should be understood in a broad sense; it

refers to any source of random variation that contaminates the underlying features of interest.
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Later contributions generalized this setup to regression models with additional co-

variates, general sampling frameworks and assignment mechanisms, panel exper-

iments and nonlinear models (Freedman, 2008; Rosenbaum, 2002; Abadie, Imbens,

and Zheng, 2014; Fogarty, 2018; Abadie et al., 2020; Abadie, Athey, Imbens, and

Wooldridge, 2023; Bojinov, Rambachan, and Shephard, 2021; Xu, 2021). An interest-

ing set of extensions (Deeb and de Chaisemartin, 2022; Startz and Steigerwald, 2023,

2024) allows for stochastic potential outcomes (say, due to post-randomization ag-

gregate shocks in an RCT); this is in the spirit of measurement-based uncertainty in

a cross-sectional setting. Fogarty (2018), Abadie et al. (2020) and Xu (2021) also pro-

pose conservative finite-population variance estimators exploiting the predictive

power of (observable) fixed attributes in different contexts.

I regard my framework as complementary to results in this tradition, both con-

ceptually and in practice. The conceptual difference between measurement and ex-

perimental variation is clear, and which is more appropriate is application-specific.

In practice, the two setups afford different tools for estimation and inference. For

instance, exact inference for sharp nulls is possible if the analyst has access to the

randomization distribution in the design world (Rosenbaum, 2002; Bojinov et al.,

2021). In a model-based framework, I show that the availability of repeated mea-

surements leads to asymptotically non-conservative finite-population inference.

Third, this paper connects with the literature on fixed-T panel data random

coefficient models. In particular, within-group and between-group transformations

to deal with permanent unobserved heterogeneity are at the heart of this literature

(Chamberlain, 1992; Arellano, 2003; Arellano and Bonhomme, 2012; Graham and

Powell, 2012), and weak dependence over measurements has proved useful when

estimation of distributional characteristics is of interest (Kotlarski, 1967; Arellano

and Bonhomme, 2012). It turns out that Finite Population Corrections can be

written as a variance over heterogeneous unit-level moment conditions; I leverage

these insights to study inference in a finite population context.

Finally, the framework developed in this paper allows us to reinterpret some

of the existing results on inference in fixed-effects models as finite-population

inference in the limit case with no sampling uncertainty. This is the case in the

“many covariates” literature, which is concerned with linear regression models
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with a growing number of parameters (Cattaneo, Jansson, and Newey, 2018a,b;

Kline, Saggio, and Sølvsten, 2020). Intuitively, removing the incidental parameters

problem in this setup is analogous to removing sampling-based uncertainty. In

practice, this only makes a difference for inference when the objects of interest

involve functions of the large-dimensional part of the model, as in Kline et al.

(2020). Another example are average marginal effects in large-T nonlinear panel

data models, which have been traditionally defined conditioning on the in-sample

fixed effects, see Higgins and Jochmans (2024) for a recent contribution.

Outline. Section 2 builds intuition and illustrates the results in a simple example

under simple random sampling. Section 3 generalizes the framework and presents

the main results on finite-population inference. Section 4 discusses a comprehen-

sive simulation study and Section 5 contains the two empirical applications. Proofs

can be found in Appendix A.

2 Simple example

I first illustrate the main points of the paper in a simple example where interest is in a

population average but the outcome of interest is contaminated with independent

measurement noise. For reference, it might help to think of estimating average

school quality in a particular district using average test scores for different cohorts.

Setup. Consider a population of size n. Unit i in the population is indexed by a

fixed attribute θi, and we are interested in the population average of θi:

βn = En
[
θi

]
≡

1
n

n∑
i=1

θi.

The task of the researcher is to obtain an estimate β̂ of βn together with a quantifi-

cation of estimation uncertainty, such as a standard error or a confidence interval.

Randomness in β̂ might arise from two sources, what I refer to as sampling-based

and measurement-based uncertainty. First, we might only have access to a repre-

sentative sample from the population of interest, which we indicate via the vector
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of inclusion indicators R1:n = (R1, . . . ,Rn) ∈ {0, 1}n, where Ri = 1 indicates that unit

i is sampled. Second, even if unit i is sampled, we might only observe noisy mea-

surements Yi = (Yi1, . . . ,YiT)′ of θi, so that in a given sample the analyst has access

to {Ri,RiYi}
n
i=1. Additionally, this requires an equation specifying the measurement

system — the way Yi relate to the underlying attributes of interest.

I formalize sampling and measurement in Assumptions S1 and S2, later gener-

alized in Section 3.

Assumption S1 (Simple random sampling).

P (R1:n = r1:n) = 1
/(n

N

)
,

for each n-vector r1:n with En
[
ri
]
= N/n.

Assumption S1 describes random sampling without replacement, which leads to

a sample of size N from the target population. The sample-to-population fraction

is thus N/n; the limit case where all population units are sampled corresponds to

N/n = 1. Similarly, this formulation nests the “infinite” superpopulation frame-

work where the sample represents a negligible fraction of the population if we let

n→∞ for fixed N.

The attributes of interest for the sampled units are not directly observed. Instead,

we have access to noisy measurements according to

(1) Yit = θi + εit, for t = 1, . . . ,T.

We assume that E
[
εit

]
= 0, a reasonable requirement that ensures that Yit are “good

measurements” in the sense of being unbiased for θi for each unit. Note that while

here we index measurements by t, these need not have a time ordering.

On top of this, we also assume below that there is limited dependence across mea-

surement errors, a necessary condition in order to gauge the extent of measurement

uncertainty.

Assumption S2 (Weakly dependent measurements in the simple model). The

measurement errors εi = (εi1, . . . , εiT)′ in (1) satisfy E
[
εiε
′

i
]
= ITσ

2; σ2 < ∞.
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Assumption S2 implies that randomness around the attribute of interest is un-

correlated over measurements; that is, E
[
εitεis

]
= 0 for s , t. Throug the lens of the

school quality example where Yit are average test scores for the tth student cohort,

this is a natural starting point: it implies that cohort-specific variation in test scores

is uncorrelated across cohorts. Similar assumptions are common in measurement

systems such as (1); see for instance the discussion in Gilraine et al. (2022) in the

context of teacher value-added models. The homoskedasticity assumption is made

for simplicity.

In Section 3, I generalize this assumption to allow for unrestricted heteroskedas-

ticity and different forms of dependence across measurements such as moving

average errors, and I discuss the extent to which weak dependence assumptions

are testable. These notions are at the heart of measurement models, as they re-

flect the intrinsic trade-off between unobserved heterogeneity and persistence: in

an error-component model such as (1), it is θi that induces strong dependence in

Yit across measurements. The suitability of a given set of restrictions should be

discussed jointly with that of a given measurement model.

Estimation and estimation uncertainty. Let Ȳi = T−1 ∑T
t=1 Yit and ε̄i = T−1 ∑T

t=1 εit.

A natural estimator for βn is

β̂ =
1
N

n∑
i=1

RiȲi =
1
N

n∑
i=1

Riθi +
1
N

n∑
i=1

Riε̄i,

where note that we average over all units, but only those with Ri = 1 effectively

enter the sums. Using E
[
Ri

]
= N/n, it is easy to see that the estimator is unbiased:

E
[
β̂
]
= βn.

The above expression also shows that the estimator decomposes into two differ-

ent terms, which are at the core of much that follows. In particular, they represent

orthogonal sources of estimation uncertainty: sampling and measurement. This

can be read off directly from the variance of the estimator:

(2) Var
(
β̂
)
= Var

 1
N

n∑
i=1

Riθi

+Var

 1
N

n∑
i=1

Riε̄i

 = (
1 −

N
n

) Varn (θi)
N

+
Var (εit) /T

N
.
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where Varn (θi) = (n − 1)−1 ∑n
i=1

(
θi − βn

)2 and where we have used Assumptions

S1 and S2.7 These two terms embed the notion of sampling and measurement

uncertainty, respectively. The first term is the variance of the ideal estimator of βn

if θi were directly observable; sampling is the only source of randomness here. The

second term captures uncertainty induced by the measurement problem.

For our purposes, the most important feature in the expression above is that

sampling-based uncertainty is indexed by the sample-to-population fraction f =

N/n. It is helpful to view Var
(
β̂
)

as a function of f , let it be denoted by V
(

f
)
. When

f = 1, there is no sampling uncertainty: in the absence of a measurement problem,

the ideal estimator of βn would be βn itself. On the other extreme, sampling

uncertainty is largest when we regard the sample as a negligible fraction of the

population. This is captured by V(0) = lim f→0 V
(

f
)
.

At the same time, measurement uncertainty does not depend on f : our ability

to obtain more accurate measurements of θi for each unit is not related to the

sampling framework. The relative weight of these two components in estimation

uncertainty is modulated by signal-to-noise in the data: sampling uncertainty is

relatively larger the more dispersed the underlying attributes are in the population

(signal) and the less noise there is in the measurement system, captured by the size

of the measurement errors and the number of measurements.

Remark 1 (External validity). An advantage of the sampling–measurement frame-

work is that it sheds light on the relevant sources of uncertainty for a given question

of interest. One notion of external validity researchers might be concerned with

is that of extrapolation beyond the specific circumstances that occurred during

measurement. For instance, this might involve prediction exercises or “parallel

universes” where a different sequence of shocks could have realized. Appropri-

ately accounting for measurement-based uncertainty implies that βn is directly

7In particular, we use basic results on simple random sampling without replacement repeatedly.

Assumption S1 implies E
[
Ri

]
= N/n and E

[
RiR j

]
= N(N − 1)/n(n − 1) for j , i. It is this dependence

across sampling indicators that induces the form of the first term in (2).
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informative for these questions.8 Another notion of external validity in the litera-

ture is that of generalizability of results to an exchangeable population of interest;

here it is adequately accounting for sampling-based uncertainty what guarantees

external validity. When that population is the one over which βn is defined, this

follows from Assumption S1. Alternatively, we can think of extrapolability of the

results to new hypothetical units drawn from a superpopulation where the original

and the new “target” units are exchangeable; say with size ñ ≥ n. We then just

need to redefine βñ as the parameter of interest. Such conceptual exercises are often

useful in meta-analyses (Meager, 2022). A more meaningful question for policy

purposes is that of transferability of results to a new, different population. This

requires additional tools that are independent of the sampling framework, see Jin

and Rothenhäusler (2024) for a discussion in a finite population context.

Conventional inference. The conventional variance estimator for β̂ = N−1 ∑n
i=1 RiȲi

would be

V̂
cluster

=
1

N(N − 1)

n∑
i=1

Ri

(
Ȳi − β̂

)2
;

a cluster-robust variance estimator (Liang and Zeger, 1986; Arellano, 1987). This

is the natural choice here: clustering within units accounts for the presence of the

persistent component θi in the measurement equation in (1); this is true regardless

of the degree of dependence across measurement errors. In Appendix B.1, I show

that

E
[
V̂

cluster
]
= V (0) ≥ V

(
f
)
,

for any sample-to-population fraction f . That is, the conventional variance estima-

tor implicitly treats the sample as a random draw from a much larger population,

and using V̂
cluster

for inference introduces superfluous sampling uncertainty when

this is not the case.

8This notion is often present in discussions about external validity when certain shocks are not

accounted for; see for instance Hahn, Kuersteiner, and Mazzocco (2020) and Deeb and de Chaisemartin

(2022) in the context of aggregate shocks.
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By how much V̂
cluster

exaggerates estimation uncertainty is a matter of signal-

to-noise. For instance, letting Varn (θi) = 1 and Var (εit) /T = 1, the variance is on

average twice as large as it should be when the sample is also the population. An

exception is the limit case where θi = θ for all units: since all underlying attributes

are equal to each other, which population units are sampled and which ones are

not is irrelevant.

Finite Population Corrections. It turns out that we can make progress when

repeated measurements are available. In particular, the standard within-between

variance decomposition gives

̂Var (εit) =
1

N(T − 1)

n∑
i=1

Ri

T∑
t=1

(
Yit − Ȳi

)2
,

̂Varn (θi) =
1

N − 1

n∑
i=1

Ri

(
Ȳi − β̂

)2
−

̂Var (εit)
T

,

which rely on weak dependence for their validity (Assumption S2). The finite-

population variance estimator is then constructed via a simple adjustment to the

conventional estimator — a Finite Population Correction:

V̂
(

f
)
= V̂

cluster
− f

̂Varn (θi)
N

.

It is not difficult to show that for any f we have

E
[
V̂

(
f
)]
= V

(
f
)
,

so that the finite-population variance estimator reflects the right amount of sam-

pling and measurement uncertainty in the problem. Under the regularity condi-

tions in Section 3, V̂
(

f
)

can then be used to perform asymptotically correct inference

for any f and a fixed number of measurements.
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3 General case

In this section, I study estimation and inference for finite-population estimands in

a general framework where sampling-based and measurement-based uncertainty

coexist and provide Finite Population Corrections that guarantee non-conservative

inference for any sample-to-population fraction.

I introduce the setup in Section 3.1 and characterize estimation uncertainty for

moment-based estimators of the parameters of interest in Section 3.2. I introduce Fi-

nite Population Corrections and state the main result on non-conservative inference

in Section 3.3. Proofs and derivations and relegated to Appendix A.

3.1 Setup

Consider a population of size n. Unit i in the population is characterized by

a set of fixed attributes {θi,Wi}, and the researcher is interested in a summary

measure βn of outcome θi, say, an average over the population or a coefficient on

a regression involving characteristics Wi. Probability statements are understood

to hold conditional on these fixed attributes. Population averages are denoted as

En
[

f (xi)
]
B n−1 ∑n

i=1 f (xi) for a function f applied to an array (xi)
n
i=1.

Given a sampling framework, we use R = (R1, . . . ,Rn) ∈ {0, 1}n to denote the

vector of inclusion indicators; Ri = 1 indicates that unit i is sampled. The observed

data for each sampled unit is a vector of noisy measurements Yi = (Yi1, . . . ,YiT)′.

In a given sample, the analyst has access to {Ri,RiYi,RiWi}
n
i=1. We now define the

objects of interest and formalize each dimension of uncertainty.

3.1.1 Estimands

Let dimθi = 1 and dim βn = p. That θi are scalar outcomes is for simplicity and all

results extend with minor modifications to the multivariate case; I will point those

out throughout the exposition. The target objects βn solve population moment

conditions h(θ,W, bn) affine in θ:

(3) En
[
h1(Wi; βn)

(
θi − h0(Wi; βn)

)]
= 0,
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where h0 (scalar-valued) and h1 (of size p × 1) are known functions continuously

differentiable in βn. I assume that h1(Wi; βn) , 0 for each unit in the population.9

The moment conditions in (3) define a broad class that includes moment-based

methods such as linear regression models, IV-like estimands or nonlinear least

squares. Setting p = 1, h1(Wi; βn) = 1 and h0(Wi; βn) = βn recovers βn = En
[
θi

]
as in

Section 2, a population average over heterogeneous attributes.

Remark 2 (Prediction example, revisited). In this application the population of

interest comprises all local police agencies in the U.S., and θi is the baseline level of

police violence associated to each department over the panel horizon. Montiel-Olea

et al. (2021) are interested in observable determinants Zi of θi such as state-level

laws or demographics and specify an exponential model of the form

(4) θi = exp
(
Z′iβn + αi

)
,

where αi is the unexplained component and the target coefficients βn are defined

via a nonlinear least squares problem. Through the lens of our framework, Zi

are observable attributes included in Wi, h1(Wi; βn) = Zi exp
(
Z′iβn

)
and h0(Wi; βn) =

exp
(
Z′iβn

)
; equation (10) in Montiel-Olea et al. (2021) is then exactly (3). The

ultimate objects of interest (predictions and counterfactuals) then involve known

transformations of these βn parameters.

Remark 3 (Misallocation example, revisited). In the exercise in Section 5.2 we

are interested in characterizing the extent of resource misallocation in the formal

manufacturing sector in Indonesia, and θi are “wedges” that measure firm-level

deviations from optimal allocation of labor. A popular approach is to explore

whether wedges relate systematically to observable firm-level characteristics Zi,

such as measures of firm size. In this context, βn are least-squares projection

coefficients.

Equation (3), on the other hand, excludes nonlinear transformations of θi. Gen-

erally speaking, nonlinear transformations of unbiased measurements are not un-

biased, and identification and estimation require additional assumptions. It is

9This is trivially satisfied by redefining the subpopulation to the set of units that satisfy this condi-

tion. In other words, this condition is definitional.
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nonetheless possible to extend this framework to cover certain nonlinear transfor-

mations. Some of these are of great relevance in the empirical illustration in Section

5.2, where the extent of cross-sectional dispersion in “wedges” θi can be directly

mapped to macroeconomic aggregates. I discuss extensions to this case in Remark

8 below and in the empirical application.

3.1.2 Measurement

I specify the following measurement equation for θi:

(5) Yi = g0(Xi; δ) + g1(Xi; δ)θi + εi, E
[
εi
]
= 0,

where Xi = (X′i1, . . . ,X
′

iT)′ is a T × dim Xit matrix of fixed attributes contained in

Wi,
10 εi = (εi1, . . . , εiT)′ are independent but not necessarily identically distributed

measurement errors and δ is a fixed k-vector of unknown parameters (k ≤ dim Xit).

These might be of direct or auxiliary interest to the researcher and do not depend on

population size n. Finally, g0 and g1 (of size T×1) are known functions continuously

differentiable in δ. This formulation allows the model to be nonlinear in observable

attributes Xi and common parameters and to be known only up to the latter; T > 1

is needed to estimate the system. Allowing for nonlinear terms in the measurement

equation substantially broadens the applicability of the methods developed here;

for instance, (5) covers factor models and multiplicative models with unobserved

components such as the Poisson regression model in Section 5.1 (see the introduc-

tion section for examples). We also assume that det g1(Xi; δ)′g1(Xi; δ) , 0 for all i,

which essentially amounts to requiring that the data are informative of attribute θi

for the population of interest.11

10Attributes in Wi but not in Xi are excluded instruments from the point of view of the measurement

equation (5); these might help describe θi and enter the moment condition for βn.
11This condition is analogous to that on h1 in equation (3), in that it implies that the results apply

for the subpopulation of units that satisfy this requirement. For instance, for a difference-in-difference

measurement model where Xit ∈ {0, 1} and T = 2, the restriction that Xi1 + Xi2 , 0 redefines the

population of interest to treated units and reflects the familiar result that βn = En
[
θi

]
is the ATT rather

than the ATE (in the absence of additional assumptions). See Graham and Powell (2012) for a discussion

of irregular models where det g1(Xi; δ)′g1(Xi; δ) might be close to zero for some units.
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The zero mean assumption E
[
εi
]
= 0 ensures that the repeated measurements

Yit unbiased for the nonstochastic component of the model. In a panel data con-

text defined in a superpopulation where {Wi, θi} are treated as random quantities,

E
[
εi
]
= 0 is a zero conditional mean assumption as in the random coefficients

model in Chamberlain (1992) and Arellano and Bonhomme (2012). Assumption 1

below is the main necessary assumption of the paper and formalizes the notion of

limited dependence in measurements.

Assumption 1 (Weakly dependent errors).

Let S(m) be a T2
×m full column rank selection matrix such that E

[
εi ⊗ εi

]
= S(m)ωi for

an m-vector of parameters ωi and the measurement system defined in (5). Then

(6) m ≤
T(T + 1)

2
− 1.

Assumption 1 rules out fully unrestricted covariance matrices, but allows for

arbitrary patterns of dependence and heteroskedasticity in the non-restricted el-

ements ωi. Assumption 1 operationalizes the notion of weak dependence over

repeated measurements via the choice of selection matrix S(m), which imposes

linear restrictions on Ωi = E
[
εiε
′

i
]
.12,13

Limited dependence is particularly appealing in a repeated measurements con-

text, where it is expected that randomness in those is (partly) non-systematic.

When measurements are drawn in parallel, independence might be reasonable;

when measurements have a natural time or spatial ordering, a stronger association

might be expected between closer errors than between those far apart. Moving

12For instance, with T = 2 measurements, the restriction E
[
εi1εi2

]
= 0 can be represented as

S(2) =

1 0 0 0

0 0 0 1


′

.

Note that this leaves E
[
ε2

it

]
for t ∈ {1, 2} completely unrestricted.

13If dimθi > 1, (6) is modified to

m ≤
T(T + 1)

2
−

dimθi(dimθi + 1)
2

.

This result is established in Arellano and Bonhomme (2012) and reflects a fundamental trade-off between

unobserved heterogeneity and error persistence in panel data models with unit-level coefficients.

20



average or m-dependent processes are convenient implementations of this idea.

Similar notions of weak dependence also underpin much of the work in time series

econometrics.14

Remark 4 (Testable restrictions.). When the order condition (6) is strict, Assump-

tion 1 is testable. A standard J-test can be constructed following the long-standing

panel data literature on testing covariance structures (Abowd and Card, 1989; Arel-

lano, 2003; Arellano and Bonhomme, 2012). The informative content of the data

for Assumption 1 and its plausibility is evident in the empirical applications that

are discussed below.

3.1.3 Sampling

Assumption 2 formalizes random sampling and embeds the population into a

sequence of finite populations of growing sizes n→∞.

Assumption 2 (Random sampling).

(i) Unit i is independently sampled with probability fn > 0.

(ii) fn satisfies n fn →∞ and fn → f ∈ [0, 1].

Assumption 2(i) implies that the sample size N =
∑n

i=1 Ri is random and is a

convenience device to avoid dealing with dependence across inclusion indicators

Ri, moving beyond the exact results in Section 2. Note that f̂ = N/n is a natural

estimator of fn; this is inconsequential for the large-sample results presented here

as long as f̂/ fn
p
−−−−→ 1 as n→∞, which will be the case. Assumption 2(ii) ensures

that as n → ∞ the expected sample size n fn also increases and that the sampling

14Classical references are Hansen and Singleton (1982) and Newey and West (1987). The literature of

repeated measurements has often favored moving average processes since they imply linear restrictions

on Ωi, see for instance Bonhomme and Robin (2009) and Bonhomme and Robin (2010) in the context

of factor models and the discussion in Arellano (2003, Chapter 5). Autoregressive processes, on the

other hand, are not covered by Assumption 1. Still, the methods in this paper can be extended to cover

such forms of dependence over measurements via quasi-differencing; see also Arellano and Bonhomme

(2012, Section 3.2) for the counterpart to Assumption 1.
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fraction fn has a well-defined limit. In essence, this is a way of relying on large-

sample approximations for finite populations while ensuring that these remain

representative of the sampling framework; for instance, choosing a sequence such

that lim fn = 0 allows us to capture the standard environment where the sample

becomes negligible relative to the population.15

3.1.4 Estimator

Letγn = (δ′, β′n)′ be the (k+p) parameters of interest, including both finite-population

estimands and parameters of the measurement system. For a generic γ̃, let

(7) u
(
Yi,Wi, γ̃

)
= Yi − g0

(
Xi; δ̃

)
− g1

(
Xi; δ̃

)
h0

(
Wi; β̃

)
and let Qi

(
δ̃
)
= IT − g1

(
Xi; δ̃

)
g1

(
Xi; δ̃

)†
denote the projection on the orthogonal of

the span of g1

(
Xi; δ̃

)
.16 Consider a (non-redundant) set of instruments A

(
Wi, δ̃

)
for

δ, assumed to be continuously differentiable in δ. I consider a method-of-moments

approach with moment function

(8) ψ(Yi,Wi, γ̃) =

ψδ(Yi,Wi, γ̃)

ψβ(Yi,Wi, γ̃)

 =
 A

(
Wi, δ̃

)
Qi

(
δ̃
)

h1(Wi; β̃)g1

(
Xi; δ̃

)† u
(
Yi,Wi, γ̃

)
.

Some intuition is as follows. Unobserved attributes θi are incidental parameters

from the point of view of estimation of the parameters of the measurement system

(5). The role of Qi

(
δ̃
)

is to induce a transformation of the system that does not

depend on θi; note that Qi

(
δ̃
)

g1

(
Xi; δ̃

)
= 0T. The moment conditions for βn, on

the other hand, rescale the system so that g1

(
Xi; δ̃

)†
g1

(
Xi; δ̃

)
= 1 and then bring in

the population moment conditions for βn defined in (3). The method-of-moments

15These embeddings are referred to as finite-population asymptotics in the literature, see Lehmann

(1975), Aronow, Green, and Lee (2014), Li and Ding (2017), Abadie et al. (2020) and Xu (2021) for

applications.
16For a matrix B, B† denotes its Moore–Penrose pseudoinverse. In the context of panel data mod-

els, g1

(
Xi; δ̃

)†
and Qi

(
δ̃
)

are often referred to as generalized between- and within-group operators,

respectively (see, for instance, Chamberlain, 1992; Arellano and Bonhomme, 2012).
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estimator γ̂ solves:

(9)
n∑

i=1

Riψ(Yi,Wi, γ̂) = 0.

3.2 Characterizing estimation uncertainty

Here, I study the large-sample properties of γ̂ as an estimator of γn, characterize its

asymptotic variance and discuss estimation uncertainty in finite populations.

First, note that γn solves

(10) En
[
E

[
ψ(Yi,Wi, γn)

]]
= 0.

This can be verified by noting that the moment function at γn satisfies:

ψδ(Yi,Wi, γn) = A (Wi, δ) Qi (δ) εi,

ψβ(Yi,Wi, γn) = h1(Wi, βn)
(
θi − h0

(
Wi; βn

))
+ h1(Wi, βn)g1 (Xi; δ)† εi.

The result follows from E
[
εi
]
= 0 and averaging over population attributes.17 Note

that setting h1 = 1, h0 = βn and g1 = 1T, ψβ(Yi,Wi, γn) reduces to the estimation error

in the simple example in Section 2. Let

Vψ,n( fn) = En
[
E

[
ψ(Yi,Wi, γn)ψ(Yi,Wi, γn)′

]]
− fnEn

[
E

[
ψ(Yi,Wi, γn)

]
E

[
ψ(Yi,Wi, γn)

]′] .(11)

Below we establish that the limit of Vψ,n( fn) as n → ∞ is the inner term of the

asymptotic variance; the second term in (11) is the Finite Population Correction.

Finally, let Hn = En

[
E

[
∇γ̃ψ(Yi,Wi, γn)

]]
. Proposition 1 characterizes the asymptotic

distribution of the (rescaled) estimation error; the following limits are assumed to

exist as part of the regularity conditions.

Proposition 1 (Asymptotic distribution). Under the measurement system in (5), As-

sumption 2 and the regularity conditions in Assumption 3 in Appendix A, as n→∞ and

17I take as given that δ is identified from E
[
ψγ(Yi,Wi, γn

]
= 0. A necessary requirement is that A

contains dim δ = k valid instruments.
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for given T > 1:
√

N
(
γ̂ − γn

) d
−−−−→ N

(
0,V( f )

)
,

where

(12) V( f ) =
(
lim
n→∞

Hn

)−1

lim
n→∞

Vψ,n( fn)
(
lim
n→∞

H′n
)−1

.

Proof. See Appendix A. □

Proposition 1 is the finite-population counterpart to standard results for prob-

lems with repeated measurements.18 While the asymptotic variance has the usual

“sandwich” form, it is indexed by f . In other words, estimation uncertainty de-

pends on the sample-to-population fraction — even if the measurement problem

does not. The reason for this is simple: these two sources of uncertainty are orthog-

onal to each other, and randomness in γ̂ reflects both. As f → 1, randomness due

to sampling disappears and the asymptotic variance of γ̂ adjusts proportionally

via the Finite Population Correction. Note that the FPC is positive-semidefinite; it

follows that for f ′ ≥ f , V( f ′) ≤ V( f ) in the matrix sense.

Two particular cases are worth highlighting. First, when f = 0 the standard

sandwich formula recovers. This is the basis for the standard, superpopulation-

based approach to inference; let V̂(0) denote any such estimator. It then follows

that V̂(0) is generally inconsistent for the finite-population variance when f > 0,

and that conventional standard errors tend to exaggerate estimation uncertainty.

Second, the FPC is zero when E
[
ψ(Yi,Wi, γn)

]
= 0, that is, when the population

moment condition (10) holds for each unit i. When it holds only on average, the

FPC is precisely equal to the variance of these heterogeneous unit-level moment

conditions over the population, and is larger the more dispersed these are. In

the simple example in Section 2, E
[
ψ(Yi,Wi, γn)

]
= θi − βn and the FPC equals

En

[(
θi − βn

)2
]
, the variance over population heterogeneous responses. It is this

18This can be established with our sampling assumption (Assumption 2) and regularity conditions

for moment-based estimators (Newey and McFadden, 1994), but does not rely on assumptions of

dependence across measurements. See also Xu (2021) for a similar result in a world with design-based

uncertainty and no repeated measurements.
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insight and the connection to random coefficient models that I exploit to propose

Finite Population Correction estimators.

One relevant case in which FPCs are zero are parameters of the measurement

model, denoted here δ. This follows from E
[
ψδ(Yi,Wi, γn)

]
= 0; it can be verified

that the upper-left k × k block of Σn is a zero matrix. This is intuitive: since the

measurement problem is present regardless of how much of the population we

sample, uncertainty about the measurement system itself should not depend on

f . When population attributes {θi}
n
i=1 are actually homogeneous, βn becomes a

common parameter. Through the lens of the causal inference literature, this is

the classical result that conventional standard errors with randomized treatments

are not conservative under constant treatment effects (Neyman, 1923/1990; Abadie

et al., 2020).

Remark 5 (Perfect measurements). Suppose that outcome attributes are observed

without error; for simplicity, set Yit = θi and T = 1. Then the moment function ψβ
is nonstochastic and the variance of the moment condition in (11) adapts to reflect

so:

Vψ,n( fn) = (1 − fn)En

[
ψβ(Yi,Wi, γn)ψβ(Yi,Wi, γn)′

]
.

This is analogous to the classical finite-populations literature where sampling-

based uncertainty is the only source of randomness in β̂. The usual variance

estimator (say, heteroskedasticity-robust) V̂(0) is conservative, but an adjustment

is here straightforward: V̂( f ) = (1 − f )V̂(0) will do.

Whichever the setup, the dominant paradigm in empirical work is to interpret

uncertainty as-if derived from an infinite population. In the next section, I show

that the discussion above is not only about the interpretation of uncertainty but has

practical consequences: estimating FPCs is possible when repeated measurements

are available.

3.3 Finite Population Corrections

Our goal in this section is to propose consistent finite-population standard errors

and confidence intervals for γ̂.
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Let ûi ≡ u
(
Yi,Wi, γ̂

)
, where u

(
Yi,Wi, γ̃

)
is defined in (7). This is a compound

residual term that includes both types of unobservables in the measurement equa-

tion: attributes and measurement errors. In a nutshell, the idea is to mimic the

approach in the simple example in Section 2 and propose variance estimators that

weight these two elements according to some f̃ ∈ [0, 1]. Let Q∗i
(
δ̃
)

denote the pro-

jection on the orthogonal of the span of g1

(
Xi; δ̃

)
⊗ g1

(
Xi; δ̃

)
.19 The following are

weighted unit-level contributions to the finite-population variance:20

(13) Λ̂i

(
f̃
)
= vec−1

[(
1 − f̃

)
IT2 + f̃ S(m)

(
Q∗i

(
δ̂
)

S(m)

)†
Q∗i

(
δ̂
)]

(ûi ⊗ ûi) .

The cross-products ûi ⊗ ûi weighted by
(
1 − f̃

)
include both attributes and mea-

surement errors; those weighted by f̃ include only measurement errors. The latter

are constructed by imposing the covariance structure in Assumption 1 and then

projecting out the part involving the attributes via Qi

(
δ̂
)
. This estimator is based

on the constructive identification proof in Arellano and Bonhomme (2012) for co-

variance structures in panel data random coefficient models. Importantly, this is

the only modification that finite-population standard errors will require relative to

conventional approaches: implementation only requires defining a selection matrix

and a projection matrix.

Now, the finite-population variance estimator of the score is

V̂ψ

(
f̂
)
=

1
N

n∑
i=1

Ri

 A
(
Wi, δ̂

)
Qi

(
δ̂
)

h1(Wi; β̂)g1

(
Xi; δ̂

)† Λ̂i

(
f̂
)  A

(
Wi, δ̂

)
Qi

(
δ̂
)

h1(Wi; β̂)g1

(
Xi; δ̂

)†
′

,

where recall that f̂ = N/n. Note that using Λ̂i(0) instead yields the conventional

estimator of the variance of the scores for repeated measurement models, which

19This is the counterpart of Qi

(
δ̃
)

for cross-products of the data:

Q∗i
(
δ̃
)
= IT2 − g1

(
Xi; δ̃

)
g1

(
Xi; δ̃

)†
⊗ g1

(
Xi; δ̃

)
g1

(
Xi; δ̃

)†
.

20vec−1
m,n : Rmn

→ R
m×n is the inverse vec operator. For an m × n matrix B, we have = vec−1 vec B = B.

I omit the subscripts in the text since I only use vec−1 here to reconstruct T × T matrices. This is readily

available in commercial software, such as via reshape in Matlab.
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averages over both dispersion in attributes and dispersion in measurement errors:

the presence of the former reminds us that this is in the class of cluster-robust

variance estimators.

Let Ĥ = N−1 ∑n
i=1 Ri∇γ̃ψ(Yi,Wi, γ̂). The estimator of the finite-population variance

in (12) is given by

(14) V̂
(

f̂
)
= Ĥ−1V̂ψ

(
f̂
)

Ĥ′−1.

For V̂
(

f̂
)
≥ 0 and an arbitrary column vector λ , 0(k+p)×1, the finite-population

standard error is σ̂λ
(

f̂
)
=

√
λ′V̂

(
f̂
)
λ/N. Finally, the (1 − α) confidence interval for

λ′γn is

Ĉλ,α

(
f̂
)
=

[
λ′γ̂ ± z1−α/2σ̂λ

(
f̂
)]
,

where zq is the q-quantile of the standard normal distribution. Proposition 2 be-

low states that this leads to non-conservative inference for any fn that satisfies

Assumption 2.

Proposition 2 (Asymptotically correct inference). Under the measurement system

in (5), Assumption 1, Assumption 2 and the regularity conditions in Assumption 3 in

Appendix A, if rank Q∗i (δ) S(m) = m then as n→∞ and for given T > 1

lim
n→∞

P
(
λ′γn ∈ Ĉλ,α

(
f̂
))
= 1 − α.

Proof. See Appendix A. □

The most relevant assumption behind Proposition 2 is that of weak dependence

across measurements. Assumption 1, however, is not sufficient. We also require

the more primitive condition that Q∗i (δ) S(m) has linearly independent columns and

thus the left inverse in (13) is well-defined. This rank condition rules out cases

where it is not possible to distinguish attributes from dependence in measurement

errors from the second-order moments of the data even if restrictions are such that

there are sufficient free parameters in the “reduced-form” covariance matrix.21

21One such example is provided by the panel data literature on distinguishing unobserved hetero-

geneity from genuine dependence, where a measurement model with uncorrelated measurements is
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Finally, note that all elements of V̂
(

f̂
)

are generally speaking a function of f̂ ,

despite our discussion following Proposition 1 that estimation uncertainty for com-

mon parameters is independent of the sampling fraction. Under Assumption 1, the

proposed variance is nonetheless valid: as we move along f̃ ∈ [0, 1], we are only

changing the relative weight of the attributes component in the compound residual

term, but the upper-left k × k block of V̂ψ( f̃ ) is constructed such that it projects out

this component.22 For f̃ = 1 and from the point of view of common parameters,

this can be seen as a generalization of the approach in Stock and Watson (2008).

Note that the variance estimator in (14) is not guaranteed to be positive semidef-

inite for all f̃ ∈ [0, 1] as written, although there always exists some f̃ for which this

is the case. A natural alternative is to use a conservative estimator, say V̂(0).23 This

is not an issue neither in our empirical applications nor in the simulation evidence

presented in Section 4.

Remark 6 (Finite Population Corrections). Note that (14) can be written as:

V̂
(

f̂
)
= V̂(0) − f̂

(
V̂(0) − V̂(1)

)
,

which has the intuitive form “conventional estimator − FPC.” The above represen-

tation is most useful when different conventional estimators might be available,

such as when δ are controls and estimation proceeds in two steps. It is then com-

mon to resort to bootstrap methods for inference on β̂; an example of this is the

first of my empirical illustrations. Let us focus on the jth entry of β̂ and denote by

observationally equivalent to one with common attributes (θi = θ for all units) and serial correlation in

very short panels (T = 2), see Arellano (2003, pp. 58–60) for additional details. More generally, the rank

condition fails when covariance restrictions do not restrict dependence across measurements but only

impose homogeneity assumptions such as equal diagonal entries.
22This follows from the definition of common parameters themselves, see again the discussion in

Section 3.1.4. Of course, if Assumption 1 fails, only the estimator that sets f = 0 would be consistent.
23This is a common drawback of estimators that are constructed by subtracting terms, as it becomes

clear in the remark below. As such, asymptotically valid estimators can also be constructed in a number

of standard ways in the literature, such as rotating the eigenvalues in the eigendecomposition of V̂
(

f̂
)
;

see for instance the discussion for two-way clustering in Cameron, Gelbach, and Miller (2011).
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Ṽβ, j(0) the bootstrap variance.24 A finite-population variance estimator for β̂ j − βn, j

that is valid in the sense of Proposition 2 is then

Ṽβ, j(0) − f̂ e′jĤ
−1
β

(
V̂ψβ

(0) − V̂ψβ
(1)

)
Ĥ′−1
β e j,

where e j is the basis vector of size p, Ĥβ indexes the corresponding p × p block of

Ĥ and V̂ψβ

(
f̂
)

is analogous to V̂ψ

(
f̂
)

but only involves the ψβ. In other words,

the analyst just needs an estimate of FPC, and Ṽβ, j(0) automatically takes care of

two-step uncertainty (see also Newey and McFadden, 1994, Chapter 6).

Remark 7 (Conservative finite-population inference). Asymptotically correct in-

ference requires limited dependence in measurements. When Assumption 1 is not

attractive, it is nonetheless possible to compute partial FPCs by leveraging the pre-

dictive content of covariates Wi for the attributes of interest. In particular, building

on similar ideas from the causal inference literature (Fogarty, 2018; Abadie et al.,

2020; Xu, 2021), one can regress scores ψβ
(
Yi,Wi, γ̂

)
on observable attributes and

use the variance of the predicted values to form partial FPCs.

Remark 8 (Extensions to higher order moments). Model (5) is a measurement

equation for θi. The results presented here extend to a nonlinear transformation

of θi, say θ2
i , if a measurement equation for θ2

i is available. A different question is

whether this is also the case if we maintain (5) as a baseline equation. One possibility

is as follows; suppose for simplicity that δ are known. Let Y∗i =
(
Yi − g0(Xi; δ)

)
⊗(

Yi − g0(Xi; δ)
)
, g∗1(Xi; δ) = g1(Xi; δ) ⊗ g1(Xi; δ) and define

(15) Ỹ∗i =
[
IT2 − S(m)

(
Q∗i (δ) S(m)

)†
Q∗i (δ)

]
Y∗i .

It can then be shown that:

Ỹ∗i = g∗1(Xi; δ)θ2
i + ε̃

∗

i , E
[
ε̃∗i
]
= 0,

which is a measurement equation for θ2
i of the form (5). We can then make progress

by characterizing the covariance structure of ε̃∗i in parallel to the exposition above.

24Similar ot the cluster-robust case, it can be shown that nonparametric (block) bootstrap estimators

are also only consistent for V(0), regardless of the sampling fraction f .
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A limitation of this approach is that it imposes more stringent conditions on the

number of available measurements relative to those needed for estimation. Still,

objects such as the population-level dispersion of θi are of great interest in the

context of the application in Section 5.2. I take a slightly different route and propose

there a non-conservative variance estimator based on higher-order cumulants that

directly estimates the FPC. This also illustrates the discussion in Remark 6.

4 Simulation study

Here I discuss a simulation study intended to illustrate the discussion so far and

verify the finite-sample properties of the inference procedures proposed in the

previous section.

Design. The design here considers a relatively simple measurement system that

is additive in a scalar attribute of interest θi, and thus in the spirit of Section 2

and the empirical illustration in Section 5.2. I augment it with some additional

ingredients as follows.

First, we consider population outcome attributes {θi}
n
i=1 that are drawn from a

superpopulation θi ∼ N
(
1, σ2

θ

)
; interest is on the population average βn = En

[
θi

]
.

We also define a T-vector of observable attributes Xi such that

Xi0 = (1 − 0.25θi) + |θi|Ui0,

Xit = 0.8Xi,t−1 +Uit,

and Uit ∼ t(κ) independently for t = 0, . . . ,T. This allows for persistence and non-

normal features in attributes Xi, and induces dependence or “fixed-effects endo-

geneity” in θi. The population is thus characterized by {θi,Xi}
n
i=1. The measurement

equation for θi is specified as

(16) Yit = θi + δXit + ϵit,

where ϵit ∼ N
(
0,X2

it

)
independently over measurements. This augments the simple

measurement model with a common parameter δ, which has to be estimated in a

first step, and heteroskedasticity in measurement errors.
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The design sets (σθ, κ) to control signal-to-noise. That is, we consider different

relative weights of sampling-to-measurement uncertainty in the variance of the

estimator. Note that the presence of δ adds two-step uncertainty to the problem,

which in practice is equivalent to measurement uncertainty in the sense that the

measurement system is not fully known. I also consider relatively small sample

sizes (N = 200) and T = 3 measurements, and vary population size according to a

grid of sample-to-population fractions f ∈ {0, 0.1, . . . , 0.9, 1}. For instance, f = 0.1

is associated to a population of n = 2, 000 units. The results for f = 0 correspond

to the superpopulation data generating process (that is, the estimand equals one).

Results. Figures 1, 2 and 3 report coverage and width of finite-population confi-

dence intervals over different sample-to-population fractions and for three signal-

to-noise regimes (low, moderate and large, respectively). I also report conservative

(or superpopulation) confidence intervals Liang and Zeger (1986); Arellano (1987)

that impose f = 0 regardless of the actual sampling framework. I use critical values

based on tn−1 as recommended in (Hansen, 2007) for cluster-robust estimators.

The results suggest an excellent performance of finite-population inference even

for relatively small sample sizes, maintaining coverage close to nominal for all

sample-to-population fractions and signal-to-noise regimes considered. Similarly,

the figures also illustrate the conservativeness of conventional estimators for f > 0.

In particular, actual coverage increases monotonically as f → 1, and is one or close

to one for cases where the sample is a large fraction of the population.

The extent of conservativeness is better captured by looking at the relative width

of confidence intervals, and so is the size of Finite Population Corrections as a

result. In line with the discussion above, these are larger the more dispersed the

underlying attributes are relative to the size of measurement errors. In particular,

for the limit case f = 1 the relative width is around 0.85 in the low signal-to-noise

regime, 0.6 in the moderate one and around 0.5 in the high signal-to-noise one.

As expected and in parallel, the actual coverage probability tends to increase for

conservative confidence intervals as signal dominates, while remaining close to

0.95 for finite-population ones.
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FIGURE 1. Results for βn and the measurement model in equation (16): coverage (left)

and width (right) of finite-population (“FP”, solid lines) and superpopulation (“SP”, dashed

lines) confidence intervals. Nominal coverage is set to 0.95. Signal-to-noise ≈ 0.5.
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FIGURE 2. Results for βn and the measurement model in equation (16): coverage (left)

and width (right) of finite-population (“FP”, solid lines) and superpopulation (“SP”, dashed

lines) confidence intervals. Nominal coverage is set to 0.95. Signal-to-noise ≈ 1.5.
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FIGURE 3. Results for βn and the measurement model in equation (16): coverage (left)

and width (right) of finite-population (“FP”, solid lines) and superpopulation (“SP”, dashed

lines) confidence intervals. Nominal coverage is set to 0.95. Signal-to-noise ≈ 2.5.

5 Empirical illustrations

In this section, I illustrate how the methods in the previous sections allow for a

systematic approach to uncertainty quantification in finite populations by consid-

ering two setups that span the wide range of empirical applications for which this

paper is relevant.

5.1 Predicting police violence

The first exercise is based on Montiel-Olea et al. (2021), which are interested in the

determinants of the use of deadly force by police officers in the United States. More

generally, it is aimed at illustrating finite-population inference in the microforecast-

ing literature (Liu et al., 2020, 2023; Giacomini et al., 2023), which is concerned with

prediction of individual outcomes in short panels.

Data and background. The authors collect data on all local police departments in

the United States, defined as those that serve a well-defined population. They use
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census records from the Law Enforcement Agency Identifiers Crosswalk dataset

(LEAIC), and the final dataset contains N = 7, 585 agencies.25 The authors are

interested in characterizing the determinants of police use of deadly force in the

U.S. at the department level and aim at retrieving comprehensive records for all

such departments: f = 1 is arguably a reasonable description of the sampling

framework.

Here interest is a on a composite index θi for the agency-specific baseline level of

lethal encounters, which is specified as an exponential model including observed,

candidate determinants Zi and unobserved, residual attributes αi; see again equa-

tion (4). The measurement system is specified as a multiplicative (Poisson) model

for the number of lethal encounters, which can be recovered by setting g0 = 0T and

g1(Xi; δ) = exp (Xiδ) in equation (5). In a slightly rearranged form, we have

(17) Yit = αi exp
(
Z′iβn + Xitδ

)
+ εit

for t = 1, . . . , 6, corresponding to yearly measurements over 2013–2018. In the

main specification, dim Xit = 1 and Xit are murders per 100,000 population served.

Throughout the period, 1, 179 agencies have at least one lethal encounter, for a

total number of 3, 504 homicides. The parameters of interest are γn = (δ, β′n)′. The

method-of-moments estimator γ̂ solves a moment condition of the form (9).26

The ultimate objects of interest are counterfactual lethal encounters for agency

i that would obtain if we were to replace some of its observed and unobserved

intrinsic characteristics — encapsulated in Zi and αi, respectively — with those of

agency j. Since the latter remain unobserved, the authors propose an estimator

based on an Empirical Bayes approach, the Poisson model and the assumption

of weakly dependent measurements. For our purposes, what matters is that this

is a known mapping of estimated coefficients to the predicted number of lethal

25The authors have made the data and code publicly available at

https://github.com/jm4474/EmpiricalBayesCounterfactuals.
26In particular, we have discussed how to write βn as a finite-population estimand in the sense of

equation (5) in Remark 2. This leads to moment conditions for βn (given δ) as in eq. (10) in Montiel-Olea

et al. (2021). For the common parameter δ, I follow the authors and set A(Xi, δ) = X′i in the moment

function in (8); see eq. (8) in Montiel-Olea et al. (2021).
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encounters:

(18) Ŷ∗t(i, j, z) =
Ȳ j + 1

exp
{
Z′jβ̂

}∑T
t=1 exp

{
X jtδ̂

} exp
{
z′β̂ + Xitδ̂

}
,

where (i, j, z) denotes a counterfactual for agency i if it had the unobserved char-

acteristics of agency j and the observed characteristics z. For instance, Ŷ∗t(i, i, z j)

are estimated counterfactuals for agency i with its own unobserved determinants

(interpreted as selection and training practices and departmental culture) and with

the observed characteristics of agency j.

Results. Table 1 reports the point estimates and standard errors for γ̂; the first

row corresponds to Xit and the subsequent entries correspond to the predictors Zi.

The second and third columns report conventional and finite-population standard

errors, respectively. Conventional standard errors are based on standard method-

of-moments variance estimators, which correspond to the diagonal entries of the

square root of V̂ (0) in equation (14). Finite-population standard errors are con-

structed by calculating V̂ (1) assuming (conditionally) uncorrelated measurements,

a maintained assumption in Montiel-Olea et al. (2021).

Table 1 shows that ignoring the finite-population dimension of the problem

leads to standard errors that are between 1.2 and 2.5 times larger than the finite-

population ones, a byproduct of introducing sampling-based uncertainty. For

example, the standard error on the estimated coefficient associated to the poverty

share goes from 0.003 to 0.007. Differences in the magnitude of the change can be

traced back to how each particular predictor loads on signal-to-noise. Note that

the standard errors on the coefficient associated to murders per 100,000 popula-

tion served are unchanged: the Finite Population Correction is zero for common

parameters, along the lines of our discussion in Section 3.

Importantly, this is just a first step towards computing counterfactuals. Statistical

significance is not necessarily of interest here; instead, Table 1 is relevant in that

uncertainty in the estimated counterfactuals in equation (18) stems directly from

the covariance matrix of these estimated coefficients. The authors consider different

types of counterfactuals; here we focus on those of the form Ŷ∗t(i, j, z j), where both
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TABLE 1. Estimates of the parameters in equation (17).

Coefficient Conventional s.e. FP s.e.

Murders per pop. (in hund. ths.) 0.005 0.003 0.003

Log of avg. pop. (in m.) 1.192 0.049 0.036

Officers per pop. (in ths.) 0.012 0.004 0.004

Gun death rate (%) 0.049 0.01 0.004

Share in poverty (%) 0.04 0.007 0.003

Share black (%) -0.024 0.004 0.002

Garner -0.031 0.127 0.102

LEOBR -0.05 0.113 0.066

Land area (sq. km. per m.) 1.0231e-05 1.1511e-06 7.4896e-07

Notes: The first row corresponds to the time-varying variable Xit in equation (17); the rest are

time-invariant predictors Zi. “Garner” are dummy variables indicating the severity of state laws

on the use of deadly force and “LEOBR” are dummy variables for state laws protecting police

from misconduct allegations, see Montiel-Olea et al. (2021) for additional details. “hund. ths.”

stands for “hundred thousands”, “m.” stands for ’millions’ and “sq. km.” for “square kilometers”.

The second and third columns report baseline standard errors (as in Montiel-Olea et al. (2021))

and finite-population standard errors for f = 1, respectively.

observed and unobserved characteristics of agency i are replaced with those of

agency j.27

Table 2 reports the results for four of the ten largest departments according to

population served (Phoenix, Chicago, Philadelphia and New York) and for these

ten combined (“Totals”). A full list of counterfactuals is reported in Appendix C.1.

Note that Table 2 directly reports prediction intervals rather than point estimates,

calculated by drawing from the estimated asymptotic distribution. This is in line

with the authors’ emphasis on quantifying estimation uncertainty, something that

makes this application particularly interesting for our purposes. Rows correspond

to agency i and columns to agency j; the diagonal elements are the actual number

27In particular, we consider the counterfactual values of Officers per pop., Gun death rate, Share in

poverty, Garner and LEOBR (see Table 1).
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of realized lethal encounters during the period. For instance, we might ask the

following question:

“What would happen to the number of lethal encounters if all ten largest agencies had the

department-specific attributes of the Chicago Police Department?”

We can read this off Table 2: the 90% finite-population prediction interval is

(565, 667), and the number of lethal encounters is thus expected to increase from a

(realized) baseline of 548 encounters during the period. The answer to this question

is however inconclusive if we were to calculate these prediction intervals as if the

U.S. local police departments were a small subset of a much larger superpopula-

tion: the 90% finite-population prediction interval increases to [545, 700]. Not only

is the finite-population interval 34% smaller than the conventional one, it also leads

to substantively different policy directions for the questions that the authors seek

to answer.

The discussion here illustrates that finite-population inference identifies the right

source of estimation uncertainty for this problem — the fact that we only observe

error-ridden measurements of agency-specific baseline police violence — and that

Finite Population Corrections can lead to substantially more precise and meaning-

ful uncertainty assessments.
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TABLE 2. Counterfactual homicides: observed and unobserved determi-

nants (selection of departments)

Phoenix Chicago Philadelphia New York

Phoenix 93 [28,32] [21,30] [5,9]

(28,32) (23,28) (6,8)

Chicago [189,216] 63 [46,64] [12,19]

(190,214) (49,61) (13,18)

Philadelphia [89,130] [29,40] 28 [7,9]

(96,120) (30,38) (7,9)

New York [568,1013] [184,310] [175,236] 55

(643,870) (204,275) (180,228)

Totals [1689,2279] [545,700] [481,567] [125,166]

(548) (1791,2094) (565,667) (481,564) (134,155)

Note: The agencies above are a selection of those in Table 3 in Appendix C.1,

which cover the ten largest departments by population served. Diagonal entries

are observed lethal encounters (totalling 548 encounters for the top ten depart-

ments). Off-diagonal entries are 90% confidence intervals for counterfactual

values of lethal encounters Ŷ∗t(i, j, z j) in equation (18), which replace characteris-

tics of agency i in the rows with those of agency j in the columns; see the text for

additional details. Baseline prediction intervals (as in Montiel-Olea et al. (2021))

are reported in brackets and finite-population prediction intervals for f = 1 are

reported in parenthesis.

5.2 Misallocation

The second exercise is motivated by the large literature on resource misallocation,

which is based on the observation that differences in aggregate TFP might not be

driven solely by technology but also by allocative efficiency. Following Hsieh and

Klenow (2009), an extensive body of work has provided evidence of substantial

heterogeneity in revenue productivity within industries, which under appropriate

conditions can be used to quantify the extent of misallocation. See Restuccia and

Rogerson (2017) for a review.
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Exploring the sources of misallocation and obtaining aggregate summary statis-

tics requires a combination of rich microdata and careful measurement, which

makes this an appealing framework to illustrate the methods in this paper. In re-

markable contrast to the previous exercise, here the literature has often understated

or ignored estimation uncertainty.

Data and background. For illustration, consider the monopolistic competition

framework in Hsieh and Klenow (2009), where firms hire labor and capital in

competitive markets, have Cobb-Douglas production functions and might face

output, capital or labor distortions such as output subsidies, differential access to

credit or labor market regulations. These create “wedges” relative to the efficient

allocation, which manifests in heterogeneity in the marginal revenue product of

capital and labor (MRPK and MRPL, respectively) within a given industry.

Measuring these firm-level wedges is challenging. Even if marginal revenue

products can be measured in the data, within firm variation over short periods

of time might reflect measurement errors, adjustment costs or transitory shocks.

A popular approach is to focus on persistent–transitory decompositions such as

firm fixed-effects in marginal revenue products as measures of these underlying

wedges (David and Venkateswaran, 2019; Chen et al., 2022; Adamopoulos et al.,

2022; Chen, Restuccia, and Santaeulàlia-Llopis, 2023; Nigmatulina, 2023).

For this exercise, I use data from the Statistik Industri, an annual census of

all formal manufacturing firms in Indonesia with more than 20 employees. I

follow Peters (2020), who focuses on firms that enter after 1990 and is interested

in heterogeneous markups — a particular form of misallocation — to motivate a

model of firm dynamics and market power.28

This leads to an unbalanced panel of about N = 17, 000 firms, which also comprise

the population of interest, for the period 1991–2000. Motivated by the literature

28Many firm surveys in developing countries have such a size-based/formal employer cutoff. This

qualifies the population of interest and complicates measuring the extensive margin. Peters (2020)

argues that a new firm in the census is also an entrant to the relevant product markets to the extent those

are the ones formal firms compete in; see Section 3.1 in the paper for additional discussion. The data

and replication files are available online at https://onlinelibrary.wiley.com/doi/full/10.3982/ECTA15565.
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above, I consider the following measurement model for log labor wedges:

(19) log M̃RPLit = θi + εit,

where log M̃RPLit is log MRPL demeaned with respect to industry averages and

where θi are firm-level wedges.29 This is a natural formulation in a context where

the distortions of interest are persistent market features such as frictions or regula-

tions.

I then use this framework to compute popular misallocation statistics. First, I

explore the relationship between labor distortions and firm size (labor force) in

line with similar exercises in the literature (Gorodnichenko et al., 2021; Yeh et al.,

2022). The finite-population estimands βn are then least-squares coefficients from

the projection of θi on firm size bins Zi; I group firms into ventiles according to

their position in the size distribution at entry.

Second, I calculate measures of allocative efficiency, or the aggregate TFP loss

associated to the extent of misallocation. An often-used formula that has a closed

form expression under normality (Hsieh and Klenow, 2009; Gorodnichenko et al.,

2021) is

(20) d log TFP = −
(
α(1 − α)

2
+

(1 − α)2σ

2

)
Varn (θi) ,

where 1− α is the labor share and σ is the elasticity of substitution. (I follow Hsieh

and Klenow (2009) and set σ = 3 and α = 0.33.) The finite-population estimand

here is βn = Varn (θi), the dispersion of labor wedges across firms in the economy.

As discussed in Remark 8, our baseline setup does not allow for such objects

without further assumptions: while conceptually the problem is identical, the

class of estimands considered rules out nonlinear transformations of the latent

29In particular, under Hsieh and Klenow (2009) marginal revenue products can be measured up

to scale via average revenue products, which are directly available in most datasets. As usual, labor

wedges are here identified up to a normalization with respect to other firm-level frictions. Here labor

is measured via the wage bill instead of the number of employees and log MRPL is demeaned with

respect to narrowly-defined industry indicators and time dummies, following Peters (2020). Finally,

note that model (19) is a representative specification, but more general formulations are possible along

the lines of Section 3.
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attributes. In Appendix B.2, I extend the framework to cover Varn (θi) in the

context of this application. The corresponding Finite Population Corrections rely

on the same notion of weak dependence across measurements as in Assumption 1

and do not require additional measurements. We do need to limit the higher order

dependence of measurement errors on latent attributes. This is not surprising:

similar assumptions are needed in any deconvolution-like exercise when interest

is in nonlinear features or higher-order moments, see Arellano and Bonhomme

(2012) for further discussion.

Results. Figure 4 show the estimated relationship between labor wedges and firm

size at entry, together with finite-population confidence intervals under the bench-

mark of conditionally uncorrelated measurements.30 I also report the confidence

intervals that would obtain if we were to treat the population of young formal

Indonesian firms as a negligible fraction of some hypothetical superpopulation.

Overall, the results suggest a positive relationship between labor-related distor-

tions and firm size, which might be indicative of size-dependent regulations that

tend to distort the optimal allocation of labor (Guner et al., 2008). Estimation un-

certainty is however not negligible: the relationship is quite noisy overall, and not

statistically significant up to the 35% percentile. Ignoring uncertainty altogether

would seem to suggest a stronger positive relationship; treating the population

as a small sample from an infinite superpopulation would rule out much of a

relationship in the bottom half of the distribution. Instead, finite-population infer-

ence correctly identifies the nature of estimation uncertainty in this context — the

measurement problem in model (19).

Consider now βn = Varn (θi) and let Yit = log M̃RPLit and Ȳ = N−1 ∑n
i=1 RiȲi. In

empirical work, an often-reported object is the variance of the estimated firm fixed

30This exercise also illustrates the applicability of our methods to unbalanced panels, with data

missing at random. In particular, note that Assumption 1 applies unit-by-unit, and that the finite-

population adjustments only appear in the unit-level weighted contributions to the variance in equation

(13). As such, a simple modification to our framework allowing for unit-specific selection matrices Si,(m)

according to the number of available measurements (and similarly for projection matrices) would do.
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FIGURE 4. Labor wedges across the distribution of firm size at entry (relative to 5th per-

centile). 95% confidence bands (finite-population and conservative) are displayed together

with the point estimates.

effects, which ignores the measurement problem:

β̃ =
1
N

n∑
i=1

Ri

T−1
T∑

t=1

Yit − Ȳ


2

.

Consider the following alternative. Let Q∗i = IT2 −T−21T2
×T2 and define S(T) as the se-

lection matrix that has zeros everywhere but at positions (1, 1), (T+2, 2), . . . , (T2,T).

Letting Ŷ∗i =
(
Yi − 1TȲ

)
⊗

(
Yi − 1TȲ

)
, a consistent estimator of the population-wide

dispersion in θi is

(21) β̂ =
1
N

n∑
i=1

RiT
−21′

T2

[
IT2 − S(T)

(
Q∗i S(T)

)†
Q∗i

]
Ŷ∗i .

Note that we are now imposing independence over measurements at the estima-

tion step — a form of Assumption 1 (Arellano and Bonhomme, 2012). See again

Appendix B.2 for additional details. Given this, an estimate of d log TFP in equa-

tion (20) is readily available. I explore the evolution of this measure of allocative
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efficiency at entry over 1991–1999, analogous to similar exercises in empirical work

(García-Santana, Moral-Benito, Pijoan-Mas, and Ramos, 2020; Bils, Klenow, and

Ruane, 2021).31 Through the lens of this framework, I characterize the second

moments of a sequence of evolving finite populations.

FIGURE 5. Evolution of allocative efficiency as in equation (20) for each cohort (within firms

in the bottom size quartile). 95% confidence bands (finite-population and conservative) are

displayed together with the point estimates.

Figure 5 shows the results for firms in the bottom quartile of the size distribution,

a group for which labor-related distortions do not seem to differ systematically

based on the number of employees.

The figure shows that the aggregate productivity losses from misallocation (if

the economy-wide distortions were like those of entering firms) are of the order of

12–15%, with a slight upward trend over time. Importantly, this is a revised down

estimate of around five percentage points in every cohort relative to the standard

31Specifically, I calculate (21) for each entry cohort over this period. Note that we still use all

measurements for each firm in estimation — this is what allows us to separate the persistent component

from measurement errors. Finally, note that in order to calculate (21) at least two (independent)

measurements are needed, which means that we cannot report results for firms in the 2000 cohort.
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calculation that does not take the measurement problem into account (reported in

gray in the figure). This is also lower than the observed dispersion in MRPL in

the data (around 40% in terms of equation (20)). These magnitudes are broadly

consistent with conventional wisdom that a large part of observed dispersion in

total factor revenue productivity is in the firm fixed effect, but emphasize the role

of measurement error and transitory shocks. Furthermore, these differences are

statistically significant, but estimation uncertainty is here far from negligible: as

an example, the change in TFP is within a confidence band of 14–20% for the 1999

cohort. In fact, the difference relative to the uncorrected estimates is only marginally

significant if one were to add sampling uncertainty on top of the finite-population

confidence bands.

In Appendix C.2, I report additional results allowing for dependence over mea-

surements, with similar implications. If anything, finite-population confidence

intervals tend to be wider. This stresses the importance of finite-population in-

ference in this context — where sampling uncertainty is indeed small (even if one

treats the population as a negligible fraction of some hypothetical superpopulation)

while measurement uncertainty remains sizeable.

All in all, these results illustrate that the methods presented in this paper provide

guidance on the relevant sources of estimation uncertainty yet again — this time

in a context where the contrast between sampling and measurement is particularly

salient and where the conventional approach to inference has been to understate

rather than exaggerate estimation uncertainty.

6 Conclusion

Finite population problems, where the sample at hand is a relevant fraction of the

population of interest, are ubiquitous in empirical work. Despite its salience, the

standard treatments of inference in finite populations assume that the features of

interest are observable upon sampling, which limits their adoption in applications.
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In this paper, I propose new methods to assess estimation uncertainty in problems

where a finite population coexists with a measurement problem. I propose finite-

population variance estimators that guarantee non-conservative inference and ap-

ply these methods to two different empirical applications: on predicting police

violence and on studying firm misallocation with census data. Finite-population

inference allows for a systematic approach to uncertainty quantification in setups

where uncertainty has been previously understood in different ways and leads to

large gains in precision in setups where routine practice has been to report standard

errors as if the sample was negligible relative to the population.

I also leave some interesting dimensions for future work. Extending the finite-

populations framework to a “many measurements” context presents no concep-

tual difficulty. If anything, some tasks are simplified: whereas weak dependence

continues to be a key assumption, more agnostic approaches to dependence are

possible, as those in the time series tradition. Having access to many measurements

also allows extensions to more general nonlinear models and facilitates construct-

ing Finite Population Corrections. Further formalizing these ideas also seems a

promising direction for future work. Similarly, the framework in this paper can be

extended to more general persistent–transitory measurement models and dynamic

panel data problems in short panels.
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A Proofs

The derivations here are a proof sketch of Propositions 1 and 2; the former is here

integrated in the proof of the latter.

Let λ denote a fixed column vector λ , 0(k+p)×1 and let f̂ = N/n. The finite-

population variance is V̂( f̂ ) in (14). Throughout, we condition on V̂( f̂ ) ≥ 0 (in the

matrix sense), which is a measure-one event in the limit. At all times, we maintain

Assumption 2 and the regularity conditions in Assumption 3. For (B) below we

also invoke Assumption 1 and assume rank Q∗i (δ) S(m) = m. Then, as n→∞:

(A)
(
λ′V( f )λ

)−1/2 √Nλ′
(
γ̂ − γn

) d
−−−−→ N(0, 1),

(B)
(
λ′V̂( f̂ )λ

)
/
(
λ′V( f )λ

) p
−−−−→ 1.

where V( f ) is defined in (12). (A) and (B) are established in Lemmas 1 and 2,

respectively. Since λ can be chosen arbitrarily, (A) and the Cramér-Wold device

imply Proposition 1. (A) and (B) imply that(
λ′V̂( f̂ )λ/N

)−1/2
λ′

(
γ̂ − γn

) d
−−−−→ N(0, 1),

and thus Proposition 2 follows.

Assumption 3 (Regularity conditions for limit theorems). [To be completed.] These

include the existence of limits in the sequence of finite populations, bounds on population

attributes and on moments of measurement errors, regularity conditions for M-estimators

as in Newey and McFadden (1994) and regularity conditions for limit theorems of i.n.i.d.

random elements.

Lemma 1 (Asymptotic normality of the rescaled estimation error). For an arbitrary

column vector λ , 0(k+p)×1,(
λ′V( f )λ

)−1/2 √Nλ′
(
γ̂ − γn

) d
−−−−→ N(0, 1).

Proof. Under regularity conditions in Assumption 3, the sample moment condition

(9) admits an expansion

√

N
(
γ̂ − γn

)
= H−1

n n−1/2
n∑

i=1

Ri√
fn

ψ(Yi,Wi, γn) + op(1) ,
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where we have also used that f̂/ fn
p
−−−−→ 1 by Assumption (2). Now, note that

from independent random sampling and repeatedly using E
[
Ri

]
= fn,

Var

 Ri√
fn

ψ(Yi,Wi, γn)

 = E
[
ψ(Yi,Wi, γn)ψ(Yi,Wi, γn)′

]
− fnE

[
ψ(Yi,Wi, γn)

]
E

[
ψ(Yi,Wi, γn)

]′ ,(22)

and that averaging over the population yields Vψ,n( fn) in (11). For an arbitrary

vector λ , 0(k+p)×1, {λ′ψ(Yi,Wi, γn)}n is a row-wise independent triangular array

and note that a′En
[
ψ(Yi,Wi, γn)

]
= 0 from (10). Asymptotic normality of these

averages follows by a Lyapunov-type condition; here we invoke Lemma A.1 in

Abadie et al. (2020). Letting Vψ( f ) = limn→∞Vψ,n( fn), the asymptotic variance is

given by λ′Vψ( f )λ, and the result follows via the the Cramér-Wold device. □

Lemma 2 (Consistency of the finite-population standard error). For an arbitrary

column vector λ , 0(k+p)×1,

λ′V̂( f̂ )λ
λ′V( f )λ

p
−−−−→ 1.

Proof. I focus on V̂ψ( f̂ ); the regularity conditions in Assumption 3 immediately

imply convergence of Ĥ to its limits. We first characterize Vψ,n( fn). It is immediate

from the expressions in (10), E
[
εiε
′

i
]
= Ωi and the result in (22) that

Vψ,n( fn) =

En

[
Ψδδ,i

]
En

[
Ψδβ,i

]
En

[
Ψ′δβ,i

]
(1 − fn)En

[
Ψββ,i

]
+ fnEn

[
Ψ̃ββ,i

] .
where ψβ,i = h1(Wi, βn)

(
θi − h0

(
Wi; βn

))
and

Ψδδ,i = A(Wi, δ)Qi(δ)ΩiQi(δ)A(Wi, δ)′,

Ψδβ,i = A(Wi, δ)Qi(δ)Ωi

(
g1 (Xi; δ)† h1(Wi, βn)

)′
,

Ψββ,i = ψβ,iψ
′

β,i + h1(Wi, βn)g1 (Xi; δ)†Ωi

(
g1 (Xi; δ)† h1(Wi, βn)

)′︸                                                    ︷︷                                                    ︸
≡Ψ̃ββ,i

.

Next, define

Λi
(

fn
)
= vec−1

[(
1 − fn

)
IT2 + fnS(m)

(
Q∗i (δ) S(m)

)†
Q∗i (δ)

] (
u
(
Yi,Wi, γn

)
⊗ u

(
Yi,Wi, γn

))
,
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and note that

u
(
Yi,Wi, γn

)
= g1 (Xi; δ)

(
θi − h0

(
Wi; βn

))
+ εi.

Furthermore, let g∗1 (Xi; δ) = g1 (Xi; δ) ⊗ g1 (Xi; δ) and note that using Assumption 1,

E
[
u
(
Yi,Wi, γn

)
⊗ u

(
Yi,Wi, γn

)]
= g∗1 (Xi; δ)

(
θi − h0

(
Wi; βn

))2
+ S(m)ωi

and Q∗i (δ) E
[
u
(
Yi,Wi, γn

)
⊗ u

(
Yi,Wi, γn

)]
= Q∗i (δ) S(m)ωi. Further, using that

Q∗i (δ) S(m) has column rank, it follows that

E
[
Λi

(
fn
)]
= (1 − fn)

[
g1 (Xi; δ)

(
θi − h0

(
Wi; βn

))2 g1 (Xi; δ)′ +Ωi

]
+ fnΩi.

The above shows unbiasedness of Λi( fn) precisely for the term in the (finite-

population) score. We can then bound the variance of this term . One can proceed

similarly for the residual term (using γ̂ instead of γn). Note that Qi(δ)g1(Xi; δ) = 0T

by construction, which shows why the finite-population variance is independent

of fn for common parameters despite the way it is contructed.

□

B Additional derivations

B.1 Section 2: conservativeness of the cluster-robust variance

Here we show that E
[
V̂

cluster
]
= V(0), where

V̂
cluster

=
1

N(N − 1)

n∑
i=1

Ri

(
Ȳi − β̂

)2
.

In order to see this, it is helpful to rewrite the expression as

V̂
cluster

=
1

N2

n∑
i=1

RiȲ
2
i −

1
N2(N − 1)

n∑
i=1

∑
j,i

RiR jȲiȲ j.

Taking expectations, we have

E
[
V̂

cluster
]
=

En

[
E

[
Ȳ2

i

]]
N

−

1
n−1En

[∑
j,i E

[
ȲiȲ j

]]
N
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=
En

[
θ2

i

]
+ σ2/T

N
−

1
n−1En

[∑
j,i θiθ j

]
N

=

n
n−1En

[(
θi − βn

)2
]

N
+
σ2/T

N
= V(0),

where we have used Assumption S1 in the first line32 and Assumption S2 in the

second one.

B.2 Finite-population inference for variances

Here I extend the results in Section 3 to cover βn = Varn (θi) = (n−1)−1 ∑n
i=1

(
θi − θ̄n

)2

(where θ̄n is the average θi in the population) in the context of the misallocation

empirical application in Section 5.2 and the measurement model in equation (19).

In particular, consider the variance estimator in equation (21), which we can

extend to allow for weak dependence as in Assumption 1:

(23) β̂ =
1
N

n∑
i=1

RiT
−21′

T2

[
IT2 − S(m)

(
Q∗i S(m)

)†
Q∗i

]
Ŷ∗i =

1
N

n∑
i=1

RiT
−21′

T2Ỹ∗i ,

with an obvious definition of Ỹ∗i . The motivation for this estimator can be traced

back to equation (15) in Remark 8, which recasts the measurement system for θi

as a measurement system for θ2
i . A valid, conservative (large-sample) variance

estimator for β̂ is given by

V̂(0) =
1
N

n∑
i=1

Ri

(
T−21′

T2Ỹ∗i − β̂
)2
.

Again through the lens of equation (15), it can be seen that the corresponding FPC

is given by

FPC = lim
n→∞

En

[
(θi − θ̄n)4

]
− β2

n.

We can then leverage Remark 6, which shows that we can construct finite-

population variance estimators if we have access to a conservative estimator that

32In particular, note that E
[
Ri

]
= N/n and E

[
RiR j

]
= N(N − 1)/n(n − 1) for j , i for simple random

sampling without replacement.
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is consistent for V(0) and a valid estimator of the FPC.A candidate for the latter

follows by noting that the FPC is also equal to (the limit of) κ4n + 2β2
n, where

κ4n(θi) = En

[
(θi − θ̄n)4

]
− 3En

[
(θi − θ̄n)2

]2
.

Arellano and Bonhomme (2012, Appendix A) propose estimators of fourth-order

cumulants. This approach allows us to obtain valid finite-population estimators

under the same notion of dependence over measurements used in estimation,

but we do need to restrict the higher-order dependence between measurement

errors and unobserved attributes; statistical independence would be a sufficient

condition.33

C Empirics: additional results

C.1 Additional results from Section 5.1

Tables 3, 4 and 5 report finite-population confidence intervals for all results re-

ported in the main empirical section in Montiel-Olea et al. (2021) (section 5.2 of the

paper). The entries correspond to the ten largest police departments by population

served. Table 3 considers counterfactuals based on both observed and unobserved

determinants, Table 4 considers only counterfactual unobserved determinants and

Table 5 only observed ones.

33One way to operationalize independence is to define a probability distribution overθi and measure-

ment errors in the limit over sequences of growing finite populations and then impose these restrictions.

Weaker conditions are possible imposing restrictions on limits of certain sums over the finite population.

Similarly, independence can be relaxed to zero cross-cumulants up to fourth order.
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TABLE 3. Counterfactual homicides for 2013-2018: observed and unobserved determinants

(a) Conventional inference

Phoenix Las Vegas Dallas San Antonio Los Angeles Houston San Diego Chicago Philadelphia New York
Phoenix 93 [52,53] [33,47] [31,45] [34,40] [31,34] [31,32] [28,32] [21,30] [5,9]
Las Vegas [93,93] 51 [33,46] [31,44] [34,40] [31,33] [30,32] [28,32] [21,30] [5,9]
Dallas [68,97] [38,54] 33 [32,33] [27,37] [24,33] [23,33] [22,30] [21,23] [5,7]
San Antonio [76,109] [42,61] [37,39] 35 [30,41] [26,37] [25,37] [24,34] [23,25] [6,8]
Los Angeles [269,314] [150,176] [105,141] [99,135] 113 [95,106] [89,106] [86,98] [66,91] [17,27]
Houston [145,156] [81,87] [54,74] [50,71] [56,62] 51 [48,53] [46,50] [34,48] [9,14]
San Diego [79,83] [44,46] [28,40] [27,39] [29,35] [26,29] 26 [23,28] [18,26] [4,8]
Chicago [189,216] [105,121] [72,100] [68,96] [75,85] [67,73] [62,74] 63 [46,64] [12,19]
Philadelphia [89,130] [50,73] [44,47] [41,45] [36,50] [31,44] [30,44] [29,40] 28 [7,9]
New York [568,1013] [317,566] [270,371] [259,348] [237,375] [201,342] [189,342] [184,310] [175,236] 55
Totals [1689,2279] [942,1273] [753,882] [717,836] [699,848] [596,769] [562,776] [545,700] [481,567] [125,166]

(b) Finite-population inference

Phoenix Las Vegas Dallas San Antonio Los Angeles Houston San Diego Chicago Philadelphia New York
Phoenix 93 [52,53] [35,44] [34,42] [35,39] [32,33] [31,32] [28,32] [23,28] [6,8]
Las Vegas [93,93] 51 [35,43] [33,41] [35,39] [31,33] [30,32] [28,31] [23,28] [6,8]
Dallas [73,90] [41,50] 33 [32,33] [28,36] [25,31] [24,30] [23,29] [21,23] [5,7]
San Antonio [81,101] [45,56] [37,39] 35 [32,40] [28,35] [27,34] [25,33] [23,25] [6,7]
Los Angeles [274,307] [153,172] [107,137] [102,130] 113 [96,104] [91,104] [87,97] [69,88] [19,24]
Houston [146,155] [82,86] [56,71] [53,67] [57,62] 51 [48,53] [46,50] [36,45] [10,13]
San Diego [79,83] [44,46] [30,38] [29,36] [30,34] [27,29] 26 [24,28] [19,24] [5,7]
Chicago [190,214] [106,120] [74,96] [71,92] [75,84] [67,72] [62,73] 63 [49,61] [13,18]
Philadelphia [96,120] [54,67] [44,47] [41,45] [38,48] [33,42] [32,41] [30,38] 28 [7,9]
New York [643,870] [359,486] [281,355] [269,333] [261,332] [225,298] [214,292] [204,275] [180,228] 55
Totals [1791,2094] [1000,1170] [751,882] [716,833] [723,809] [626,717] [597,704] [565,667] [481,564] [134,155]

Note: Diagonal entries are observed lethal encounters (totalling 548 encounters). Off-diagonal entries

are 90% confidence intervals for counterfactual values of lethal encounters Ŷ∗t(i, j, z j) in equation (18),

which replace characteristics of agency i in the rows with that of agency j in the columns; see the text in

Section 5.1 for additional details. In this case, we replace both observed and unobserved determinants

of police use of deadly force.
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TABLE 4. Counterfactual homicides for 2013-2018: unobserved determinants

(a) Conventional inference

Phoenix Las Vegas Dallas Philadelphia San Diego Chicago Los Angeles Houston San Antonio New York
Phoenix 93 [64,70] [52,74] [46,78] [51,66] [48,64] [44,54] [44,53] [40,57] [13,25]
Las Vegas [70,77] 51 [40,58] [36,60] [40,51] [38,49] [34,43] [34,41] [30,45] [10,20]
Dallas [43,61] [31,44] 33 [28,37] [26,38] [25,36] [23,31] [22,31] [24,28] [8,12]
Philadelphia [35,60] [25,42] [26,35] 28 [22,35] [23,32] [19,30] [19,29] [19,29] [7,11]
San Diego [39,50] [28,35] [24,36] [22,35] 26 [23,29] [21,26] [21,25] [18,28] [6,11]
Chicago [93,125] [67,87] [60,86] [57,81] [60,74] 63 [50,64] [53,59] [44,68] [16,28]
Los Angeles [198,244] [139,175] [125,170] [111,172] [121,150] [115,146] 113 [103,125] [95,130] [34,54]
Houston [92,112] [66,79] [57,79] [53,78] [56,68] [57,63] [47,58] 51 [42,62] [15,26]
San Antonio [60,85] [42,62] [43,52] [36,56] [35,54] [34,53] [32,43] [30,45] 35 [11,17]
New York [207,402] [147,284] [152,234] [148,222] [133,233] [130,224] [117,189] [111,197] [116,178] 55
Totals [952,1279] [677,909] [656,802] [591,809] [595,762] [577,731] [531,614] [510,630] [489,630] [177,257]

(b) Finite-population inference

Phoenix Las Vegas Dallas Philadelphia San Diego Chicago Los Angeles Houston San Antonio New York
Phoenix 93 [65,69] [55,70] [51,70] [54,61] [51,61] [46,51] [46,51] [43,53] [16,21]
Las Vegas [71,75] 51 [43,54] [40,53] [43,47] [40,47] [35,41] [36,39] [34,41] [13,16]
Dallas [45,58] [33,41] 33 [30,35] [28,35] [27,34] [23,31] [24,30] [25,27] [9,11]
Philadelphia [39,54] [28,38] [28,33] 28 [24,32] [24,31] [20,29] [21,27] [20,26] [8,10]
San Diego [41,47] [30,33] [26,33] [24,32] 26 [24,28] [21,25] [22,24] [20,25] [8,10]
Chicago [99,118] [71,83] [63,82] [60,77] [62,71] 63 [51,62] [53,58] [48,63] [19,24]
Los Angeles [208,232] [146,168] [126,168] [116,165] [124,146] [119,142] 113 [106,121] [98,125] [39,49]
Houston [96,107] [69,76] [60,75] [56,72] [59,65] [58,62] [49,56] 51 [46,58] [18,22]
San Antonio [64,78] [46,56] [45,50] [39,51] [38,49] [36,48] [33,42] [32,41] 35 [12,16]
New York [248,326] [177,232] [169,212] [159,204] [152,199] [147,190] [131,165] [130,164] [129,162] 55
Totals [1026,1165] [732,828] [662,793] [611,777] [626,717] [600,691] [535,603] [536,585] [508,602] [198,232]

Note: Diagonal entries are observed lethal encounters (totalling 548 encounters). Off-diagonal entries

are 90% confidence intervals for counterfactual values of lethal encounters Ŷ∗t(i, j, zi) in equation (18),

which replace characteristics of agency i in the rows with that of agency j in the columns; see the text in

Section 5.1 for additional details. In this case, we replace only unobserved determinants of police use

of deadly force.
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TABLE 5. Counterfactual homicides for 2013-2018: observed determinants

(a) Conventional inference

Phoenix San Antonio Las Vegas Los Angeles Houston Dallas San Diego Chicago Philadelphia New York
Phoenix 93 [69,79] [70,78] [65,77] [57,70] [53,67] [45,59] [43,59] [31,52] [27,46]
San Antonio [43,49] 35 [33,39] [34,35] [29,33] [27,32] [23,27] [22,27] [16,24] [14,21]
Las Vegas [63,69] [48,56] 51 [46,55] [40,49] [37,47] [32,41] [31,41] [22,37] [19,32]
Los Angeles [139,164] [116,121] [109,130] 113 [95,108] [89,103] [77,88] [73,89] [52,79] [47,68]
Houston [70,86] [56,65] [55,67] [55,63] 51 [48,50] [38,47] [39,44] [28,39] [24,35]
Dallas [48,61] [39,46] [38,47] [38,44] [36,37] 33 [26,33] [28,30] [20,27] [17,24]
San Diego [43,56] [36,42] [35,44] [35,40] [30,37] [28,35] 26 [23,30] [17,26] [16,22]
Chicago [103,140] [84,105] [81,108] [82,100] [76,84] [73,78] [58,74] 63 [45,58] [39,52]
Philadelphia [52,89] [43,66] [41,69] [42,63] [39,54] [37,50] [30,46] [32,41] 28 [23,29]
New York [114,195] [96,143] [91,151] [94,135] [84,119] [80,110] [69,94] [69,91] [56,71] 55
Totals [774,996] [642,738] [610,773] [626,699] [564,611] [532,572] [442,516] [445,493] [320,435] [286,378]

(b) Finite-population inference

Phoenix San Antonio Las Vegas Los Angeles Houston Dallas San Diego Chicago Philadelphia New York
Phoenix 93 [72,76] [72,76] [69,74] [59,68] [55,64] [48,55] [46,56] [34,47] [31,41]
San Antonio [44,47] 35 [35,37] [34,35] [29,32] [27,31] [24,26] [23,27] [17,22] [16,19]
Las Vegas [64,68] [51,54] 51 [48,52] [42,47] [40,44] [35,38] [33,39] [25,33] [22,28]
Los Angeles [145,156] [117,120] [114,122] 113 [97,106] [91,100] [80,85] [75,87] [57,73] [52,63]
Houston [72,83] [58,64] [58,64] [56,61] 51 [48,49] [40,44] [40,43] [30,36] [27,32]
Dallas [50,58] [40,45] [40,45] [39,43] [36,36] 33 [28,31] [28,30] [21,25] [19,22]
San Diego [46,52] [38,40] [37,41] [36,39] [32,35] [30,33] 26 [25,28] [19,24] [17,20]
Chicago [108,132] [87,102] [86,101] [84,97] [78,83] [73,78] [61,70] 63 [48,54] [43,48]
Philadelphia [58,79] [47,61] [46,61] [45,58] [42,50] [40,47] [33,42] [34,39] 28 [24,27]
New York [129,169] [105,130] [102,130] [102,123] [92,107] [87,100] [74,88] [75,84] [60,66] 55
Totals [813,937] [655,719] [648,720] [636,686] [578,595] [543,560] [459,493] [450,484] [341,407] [309,353]

Note: Diagonal entries are observed lethal encounters (totalling 548 encounters). Off-diagonal entries

are 90% confidence intervals for counterfactual values of lethal encounters Ŷ∗t(i, i, z j) in equation (18),

which replace characteristics of agency i in the rows with that of agency j in the columns; see the text in

Section 5.1 for additional details. In this case, we replace only observed determinants of police use of

deadly force.
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C.2 Additional results from Section 5.2

In this section, I report additional results from the application to firm misallocation

in Section 5.2.

First, for completeness, Figures 8, 9 and 10 report results for allocative efficiency

in the sense of d log TFP in equation (20) for the remaining size quartiles. Second,

whereas in the text I have focused on a baseline measurement model with uncor-

related measurements (but unrestricted heteroskedasticity), I report here results

further allowing for weak dependence.

In particular, given the unbalanced nature of the panel, I allow for richer forms

of m-dependence as a larger number of measurements becomes available. Let Ti

denote the number of such periods for firm i. I choose m = 1 for Ti = 3, m = 2

if Ti ∈ {4, 5}, m = 3 if Ti ∈ {5, 6, 7, 8} and m = 4 if Ti ∈ {9, 10}. In other words,

for firms that enter in 1991 and remain active throughout the panel, we allow for

unrestricted dependence in measurement errors over up to four year horizons.

It is easy to see that these choices satisfy the order condition in Assumption 1,

sometimes with equality. Note that for figures relative to allocative efficiency

not only the confidence intervals but also the point estimates might change as a

consequence, see equation (23).

Figures 6 and 7 are the counterparts to Figures 4 and 5. In qualitative terms, the

results are similar to those reported in the body of the paper, although the finite-

population confidence intervals tend to be wider. This reinforces the main message

in Section 5.2 emphasizing the need to account for measurement-based uncertainty

while leaving a minor role for sampling-based uncertainty — even if the analyst

treats the population as a negligible fraction of an infinite superpopulation.

It is also important to stress that sensitivity to the baseline assumption of uncorre-

lated measurements might suggest either a restrictive notion of weak dependence

or misspecification of the underlying measurement system. Regarding the former,

the m-dependence restrictions above are only marginally rejected when I imple-

ment a test of covariance structures along the lines of Remark 4. An alternative is to

consider richer measurement equations for θi beyond the benchmark model. This

seems particularly promising in this context, where there might be a time-varying
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FIGURE 6. Labor wedges across the distribution of firm size at entry (relative to 5th per-

centile). 95% confidence bands (finite-population and conservative) are displayed together

with the point estimates. Results allowing for m-dependence in measurements, see the text

for additional details.

systematic component in labor-related distortions or persistent, predictable varia-

tion in MRPL beyond what is captured in equation (19). All of these can be framed

within the class of models discussed in Section 3.
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FIGURE 7. Evolution of allocative efficiency as in equation (20) for each cohort (within firms

in the bottom size quartile). 95% confidence bands (finite-population and conservative)

are displayed together with the point estimates. Results allowing for m-dependence in

measurements, see the text for additional details.
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(a) Uncorrelated measurements.

(b) m-dependent measurements.

FIGURE 8. Evolution of allocative efficiency as in equation (20) for each cohort (within firms

in the second size quartile). 95% confidence bands (finite-population and conservative) are

displayed together with the point estimates. See the text for details on dependence over

measurements.
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(a) Uncorrelated measurements.

(b) m-dependent measurements.

FIGURE 9. Evolution of allocative efficiency as in equation (20) for each cohort (within

firms in the third size quartile). 95% confidence bands (finite-population and conservative)

are displayed together with the point estimates. See the text for details on dependence over

measurements.

58



(a) Uncorrelated measurements.

(b) m-dependent measurements.

FIGURE 10. Evolution of allocative efficiency as in equation (20) for each cohort (within

firms in the upper size quartile). 95% confidence bands (finite-population and conservative)

are displayed together with the point estimates. See the text for details on dependence over

measurements.
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