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B Additional proofs

We adopt the following notation in the proofs below. We use PN, EN, VarN, CovN to

denote probability, expectation, variance and covariance given {θi, si}
N
i=1 (we insert

a subindex κ or κT when necessary).

With a slight abuse of nomenclature we sometimes call Loève’s inequality to

the statement |
∑m

i=1 Xi|
r
≤ cr

∑m
i=1 |Xi|

r (with cr = 1 if r ≤ 1 and cr = mr−1 otherwise)

where X1, . . . ,Xm are random variables and not just to E
[
|
∑m

i=1 Xi|
r]
≤ cr

∑m
i=1 E

[
|Xi|

r]
(which is implied by the former). See Davidson (1994, Theorem 9.28).

Without loss of generality we assume κ ≥ 0. We also define the scaling function

g(κ) = max{1, κ} and note that g(κ)/κ = g(κ−1). In Proposition 1

V(h, κ)

g(κ2/N)
=

∑
∞

ℓ=0

{
ιℓ(h)β̄2

ℓEN

[
X2

t X2
t+h−ℓ

]
+ γ̄2

ℓEN

[
X2

t Z2
t+h−ℓ

]}
g(κ2/N)

+

∑N
i=1

∑
∞

ℓ=0 ŝ2
i δ

2
iℓEN

[
X2

t u2
i,t+h−ℓ

]
Ng(N/κ2)

is bounded below by CM2 > 0 and above by 3C4M4 < ∞ for any κ (and h). The same

applies to V(h, κ)/g(κ2/N) in Proposition 2. In Proposition 3, tr{V(h, κ)}/g(κ2/N) is

bounded below by (a2
0 + 1)CM2 > 0 and above by 6(p + 1)(a2

0 + 1)C4M4 < ∞.
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Proposition 1

Parts (A), (B) and (C) of the proof of Proposition 1 in Appendix A are established

in Lemmas 1, 2 and 3 below. Lemmas 4 and 5 provide auxiliary results for Lemma

1, while 6 and 7 do the same for 2. At all times, we make Assumptions 1, 2 and 3

and we fix h and p ≥ h as T,N→∞ (note we do not need T/N→ 0 here).

Lemma 1 (Asymptotic normality of the score).∑T−h
t=1 Xtξt(h, κT)√
(T − h)V(h, κT)

d
−−−−−→

PκT

N(0, 1).

Proof. The argument relies on the martingale representation:

T−h∑
t=1

Xtξt(h, κT)√
(T − h)V(h, κT)

=

T∑
t=1

χT,t(h, κT)

where we have defined

χT,t(h, κ) =
XtΞX,t(h, κ) + ZtΞZ,t(h) + (κT/N)

∑N
i=1 uitΞU,it(h)√

(T − h)V(h, κT)

with

ΞX,t(h, κ) =
h∑
ℓ=1

1{t − ℓ ≥ 1}β̄h−ℓXt−ℓ +

∞∑
ℓ=p+1

1{t ≤ T − h}β̄h+ℓXt−ℓ

+

∞∑
ℓ=0

1{t ≤ T − h}

γ̄h+ℓZt−ℓ +
κ
N

N∑
i=1

ŝiδi,h+ℓui,t−ℓ

 ,
ΞZ,t(h) =

h∑
ℓ=1

1{t − ℓ ≥ 1}γ̄h−ℓXt−ℓ,

ΞU,it(h) =
h∑
ℓ=1

1{t − ℓ ≥ 1}ŝiδi,h−ℓXt−ℓ.

Under Assumption 2, it can be readily verified that {χT,t(h, κT)}Tt=1 is a martingale

difference array adapted to the natural filtration {FT,t}
T
t=1,

FT,t = σ
(
{Xτ,Zτ, {uiτ}

N
i=1}τ≤t, {θi, si}

N
i=1

)
,
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that is, χT,t(h, κT) is FT,t-measurable and EκT

[
χT,t(h, κT)

∣∣∣FT,t−1

]
= 0.

By construction,
∑T

t=1 EκT

[
χT,t(h, κT)2

]
= 1 and we can show (Lemmas 4 and 5)

T∑
t=1

χT,t(h, κT)2 p
−−−−−→

PκT

1 and lim
T→∞

T∑
t=1

EκT

[
χT,t(h, κT)4

]
= 0.

By Davidson (1994, Theorems 23.11, 23.16 and 24.3), the Lemma follows. □

Lemma 2 (Consistency of the standard error).

V̂(h)
V(h, κT)

p
−−−−−→

PκT

1.

Proof. Since V(h, κT) > 0 holds PκT
-a.s., it suffices to show that

V̂(h) − V(h, κT)

g(κ2
T/N)

p
−−−−−→

PκT

0.

Write

V̂(h) − V(h, κT)

g(κ2
T/N)

= DT,1(h, κT) +DT,2(h, κT),

where we have defined

DT,1(h, κT) =
T−h∑
t=1

(
X2

t ξt(h, κT)2
− EκT

[
X2

t ξt(h, κT)2
∣∣∣{θi, si}

N
i=1

])
(T − h)g(κ2

T/N)
,

DT,2(h, κT) =
T−h∑
t=1


(
N−1 ∑N

i=1 x̂it(h)ξ̂it(h)
)2
− X2

t ξt(h, κT)2

(T − h)g(κ2
T/N)

 .
Next, using (x2

− y2) = (x − y)(x + y) and the Cauchy-Schwarz inequality,∣∣∣DT,2(h, κT)
∣∣∣ ≤ √

D−T,2(h, κT)
√

D+T,2(h, κT),

with

D−T,2(h, κT) =
T−h∑
t=1

[(
N−1 ∑N

i=1 x̂it(h)ξ̂it(h)
)
− Xtξt(h, κT)

]2

(T − h)g(κ2
T/N)

,
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D+T,2(h, κT) =
T−h∑
t=1

[(
N−1 ∑N

i=1 x̂it(h)ξ̂it(h)
)
+ Xtξt(h, κT)

]2

(T − h)g(κ2
T/N)

.

Adding and subtracting Xtξt(h, κT) within the squares in D+T,2(h, κT) and applying

Loève’s inequality,

D+T,2(h, κT) ≤ 2D−T,2(h, κT) + 8|DT,1(h, κT)| +
8V(h, κT)

g(κ2
T/N)

.

We can show (Lemmas 6 and 7) that DT,1(h, κT) = oPκT
(1) and D−T,2(h, κT) = oPκT

(1).

Given that V(h, κT)/g(κ2
T/N) is bounded PκT

-a.s., D+T,2(h, κT) = OPκT
(1) which implies

DT,2(h, κT) = oPκT
(1) and the Lemma follows. □

Lemma 3 (Negligibility of the reminder).

RT(h, κT)
p

−−−−−→
PκT

0.

Proof. Let x̄t(h) = (Xt−1 − X̄1(h), . . . ,Xt−p − X̄p(h))′ where X̄ℓ(h) = (T − h)−1 ∑T−h
t=1 Xt−ℓ.

Since either ŝi was demeaned or time effects were not included as controls,

π̂(h)′Wit = π̂0,i(h) +
p∑
ℓ=1

π̂X,ℓ(h)ŝiXt−ℓ = ŝi
(
X̄0(h) + π̂X(h)′x̄t(h)

)
,

where {π̂0,i(h)}, πX(h) = (π̂X,1(h), . . . , π̂X,p(h))′ are the coefficients from the regression

of siXt on unit fixed effects and p lags of ŝiXt. Furthermore, it is readily seen that

π̂X(h) are also the coefficients in a regression of Xt on x̄t(h),

π̂X(h) =

T−h∑
t=1

x̄t(h)x̄t(h)′

−1 T−h∑

t=1

x̄t(h)Xt.

Note that E
[
Xt−ℓ

]
= E

[
Xt−ℓXt

]
= 0 and that Var

(∑T−h
t=1 Xt−ℓ

)
,Var

(∑T−h
t=1 Xt−ℓXt

)
are

bounded by a constant (M2 and M4, respectively) times (T− h) under Assumptions

1, 2 and 3. Also note that (T − h)−1 ∑T−h
t=1 x̄t(h)x̄t(h)′ = E

[
X2

t

]
× Ip + oPκT

(1). All of this

is independent of κT. It follows that

X̄0(h) = OPκT

(
(T − h)−1/2

)
, π̂X(h) = OPκT

(
(T − h)−1/2

)
.
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Write

RT(h, κT) = −
X̄0(h)

∑T−h
t=1 ξt(h, κT)√

(T − h)V(h, κT)
−
π̂X(h)′

∑T−h
t=1 x̄t(h)ξt(h, κT)√

(T − h)V(h, κT)
.

To obtain RT(h, κT) = oPκT
(1), we show

{
(T − h)V(h, κT)

}−1/2 ∑T
t=1 ξt(h, κT) = OPκT

(1)

and
{
(T − h)V(h, κT)

}−1/2 ∑T
t=1 x̄t(h)ξt(h, κT) = OPκT

(1). We do so by direct calculation.

First,

EN,κT


T−h∑

t=1

ξt(h, κT)


2 = EN


T−h∑

t=1

∞∑
ℓ=0

ιℓ(h)β̄ℓXt+h−ℓ


2 + EN


T−h∑

t=1

∞∑
ℓ=0

γ̄ℓZt+h−ℓ


2

+
κ2

T

N2 EN


T−h∑

t=1

N∑
i=1

∞∑
ℓ=0

ŝiδiℓui,t+h−ℓ


2

≤ 2(T − h)
[  ∞∑
ℓ=0

ιℓ(h)|β̄ℓ|


2

EN

[
X2

t

]
+

 ∞∑
ℓ=0

|γ̄ℓ|


2

EN

[
Z2

t

]
+
κ2

T

N2

N∑
i=1

 ∞∑
ℓ=0

|ŝiδiℓ|


2

EN

[
u2

it

] ]
≤ (T − h) × 2(2 + κ2

T/N)C4M2,

where the last line uses Assumption 3(i)–(iv).1 By iterated expectations and Cheby-

shev’s inequality, for any ε > 0,

PκT


∣∣∣∣∣∣∣

∑T
t=1 ξt(h, κT)√

(T − h)V(h, κT)

∣∣∣∣∣∣∣ > ε
 = EκT

PN,κT


∣∣∣∣∣∣∣

∑T
t=1 ξt(h, κT)√

(T − h)V(h, κT)

∣∣∣∣∣∣∣ > ε



≤
1
ε2 EκT

[
2(2 + κ2

T/N)C4M2

V(h, κT)

]
≤

1
ε2

6C4M2

CM2 < ∞,

1We also used the fact that for any linear processωt =
∑
∞

ℓ=0 φℓεt−ℓwhere {φℓ} are absolutely summable

and {εt} is white noise with E
[
εt
]
= 0 and E

[
ε2

t

]
= 1,

E


 T∑

t=1

ωt


2 = T−1∑

m=−(T−1)

(T − |m|)
∞∑
ℓ=0

φℓφℓ+|m| ≤ T
∞∑
ℓ=0

|φℓ|
∞∑

m=−∞

|φℓ+|m|| ≤ 2T

 ∞∑
ℓ=0

|φℓ|


2

.
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where the bound on (2+κ2
T/N)/V(h, κT) = ((2+κ2

T/N)/g(κ2
T/N))× (g(κ2

T/N)/V(h, κT))

uses (2 + κ)/g(κ) ≤ 3 and V(h, κT)/g(κ2
T/N) ≥ CM2.

Similarly for any k = 1, . . . , p,

EN,κT


T−h∑

t=1

Xt−kξt(h, κT)


2 ≤ (T − h)

 ∞∑
ℓ=0

ιℓ(h)β̄2
ℓEN

[
X2

t−kX
2
t+h−ℓ

]
+

∞∑
ℓ=0

γ̄2
ℓEN

[
X2

t−kZ
2
t+h−ℓ

]
+
κ2

T

N2

N∑
i=1

∞∑
ℓ=0

ŝ2
i δ

2
iℓEN

[
X2

t−ku
2
i,t+h−ℓ

]
+ 2

h+k∑
ℓ=1

ιh+k−ℓ(h)ιh+k+ℓ(h)|β̄h+k−ℓβ̄h+k+ℓ|EN

[
X2

t−kX
2
t−k−ℓ

]
≤ (T − h) × (4 + κ2

T/N)C4M4,

where we used the autocovariances of Xt−kξt(h, κT) and Assumption 3(i)–(iv) again.

By iterated expectations and Chebyshev, for any ε > 0,

PκT


∣∣∣∣∣∣∣
∑T

t=1 Xt−rξt(h, κT)√
(T − h)V(h, κT)

∣∣∣∣∣∣∣ > ε
 ≤ 1
ε2 EκT

[
(4 + κ2

T/N)C4M4

V(h, κT)

]
≤

1
ε2

5C4M4

CM2 < ∞.

Thus, RT(h, κT) = oPκT
(1) and the Lemma follows. □

Lemma 4. Under the conditions of Lemma 1,

T∑
t=1

χT,t(h, κT)2 p
−−−−−→

PκT

1.

Proof. We show VarN,κT

(∑T
t=1 χT,t(h, κT)2

)
≤ V̄/(T − h) for a constant V̄ independent

of κT. Since EN,κT

[∑T
t=1 χT,t(h, κT)2

]
= 1, by iterated expectations and Chebyshev’s

inequality, for any ε > 0,

PκT


∣∣∣∣∣∣∣

T∑
t=1

χT,t(h, κT)2
− 1

∣∣∣∣∣∣∣ > ε
 = EκT

PN,κT


∣∣∣∣∣∣∣

T∑
t=1

χT,t(h, κT)2
− 1

∣∣∣∣∣∣∣ > ε



≤
V̄

ε2(T − h)
→ 0.

As argued at the beginning of the section, V(h, κ)/g(κ2/N) is bounded away from

zero and infinity uniformly over κ. Thus, it suffices to show

VarN,κT

 T∑
t=1

V(h, κT)χT,t(h, κT)2

g(κ2
T/N)

 ≤ V̄
T − h

,

6



PκT
-a.s., for some constant V̄ independent of κT. We do this by a direct calculation.

Define χ̄T,t(h, κT) = χT,t(h, κT)
{
(T − h)V(h, κT)/g(κ2

T/N)
}1/2

so that

g
(
κT
√

N

)
χ̄T,t(h, κT) = XtΞX,t(h, κ) + ZtΞZ,t(h) +

κT

N

N∑
i=1

uitΞU,it(h)

=

∞∑
ℓ=1

bt,ℓXtXt−ℓ︸         ︷︷         ︸
≡g(κT/

√
N)ζ1,t

+

∞∑
ℓ=0

ct,ℓXtZt−ℓ︸         ︷︷         ︸
≡g(κT/

√
N)ζ2,t

+

h∑
ℓ=1

c̃t,ℓZtXt−ℓ︸         ︷︷         ︸
≡g(κT/

√
N)ζ3,t

+
κT

N

N∑
i=1

∞∑
ℓ=0

dit,ℓXtui,t−ℓ︸                    ︷︷                    ︸
≡g(κT/

√
N)ζ4,t

+
κT

N

N∑
i=1

h∑
ℓ=1

d̃it,ℓuitXt−ℓ︸                    ︷︷                    ︸
≡g(κT/

√
N)ζ5,t

(B.1)

for some {bt,ℓ, ct,ℓ, c̃t,ℓ, {dit,ℓ, d̃it,ℓ}
N
i=1} that depend on {θi, si}

N
i=1 (and h). Note that the

coefficients depend on t only via the indicator functions 1{t − ℓ ≤ 1} and 1{t ≤ T − h}.

It will be convenient to define {bℓ, cℓ, c̃ℓ, {di,ℓ, d̃i,ℓ}
N
i=1} as the coefficients we would get

by setting the indicators to one. This implies |bt,ℓ| ≤ |bℓ|, |ct,ℓ| ≤ |cℓ|, and so on.

By Assumption 3(iv), |bℓ|, |cℓ|, |c̃ℓ|, |diℓ|, |d̃iℓ| ≤ C̄ℓ almost surely for finite constants C̄ℓ
such that C̄ =

∑
∞

ℓ=1 C̄ℓ < ∞ (in fact, we can take C̄ ≤ C2 independent of h).

Consider the variance

VarN,κT

 T∑
t=1

V(h, κT)χT,t(h, κT)2

g(κ2
T/N)

 = ∑T
t=1

∑T
τ=1 ΓT(t, τ)

(T − h)2

where (omitting the dependence on h, κT and {θi, si}
N
i=1)

ΓT(t, τ) = CovN,κT

(
χ̃T,t(h, κT)2, χ̃T,τ(h, κT)2

)
.

Expanding the square of χ̃T,t(h, κT) and using the linearity of the covariance we can

express ΓT(t, τ) as the sum of covariances ΓT,k1k2k3k4
(t, τ) = CovN,κT

(
ζk1,t
ζk2,t
, ζk3,τ

ζk4,τ

)
where k1, k2, k3, k4 range over the five terms in (B.1). Moreover, if k1 = k2,

ΓT,k1k2k3k4
(t, τ) can only be non-zero if k3 = k4, while if k1 , k2, only if either k1 = k3
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and k2 = k4 or k1 = k4 and k2 = k3. Then, by the triangle inequality,

∣∣∣ΓT(t, τ)
∣∣∣ =

∣∣∣∣∣∣∣∣
5∑

k1=1

5∑
k2=1

5∑
k3=1

5∑
k4=1

ΓT,k1k2k3k4
(t, τ)

∣∣∣∣∣∣∣∣
≤

5∑
k1=1

5∑
k3=1

∣∣∣ΓT,k1k1k3k3
(t, τ)

∣∣∣ + 2
5∑

k1=1

5∑
k2=1

∣∣∣ΓT,k1k2k1k2
(t, τ)

∣∣∣ . (B.2)

We begin with
∑T

t=1
∑T
τ=1 ΓT,k1k1k3k3

(t, τ). Consider k1 = k3 = 1:

g
(
κ4

T

N2

) ∣∣∣ΓT,1111(t, τ)
∣∣∣ = ∣∣∣∣∣∣∣CovN


 ∞∑
ℓ=1

bt,ℓXtXt−ℓ

2

,

 ∞∑
ℓ=1

bτ,ℓXτXτ−ℓ

2
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
∞∑
ℓ1=1

∞∑
ℓ2=1

∞∑
ℓ3=1

∞∑
ℓ4=1

bt,ℓ1
bt,ℓ2

bτ,ℓ3bτ,ℓ4CovN

(
X2

t Xt−ℓ1
Xt−ℓ2

,X2
τXτ−ℓ3Xτ−ℓ4

)∣∣∣∣∣∣∣
≤

∞∑
ℓ1=1

∞∑
ℓ3=1

b2
ℓ1

b2
ℓ3

∣∣∣∣CovN

(
X2

t X2
t−ℓ1
,X2
τX

2
τ−ℓ3

)∣∣∣∣
+ 2

∞∑
ℓ1=1

∑
ℓ2,ℓ1

|bℓ1bℓ2bℓ1+τ−tbℓ2+τ−t|

∣∣∣∣CovN

(
X2

t Xt−ℓ1
Xt−ℓ2

,X2
τXt−ℓ1

Xt−ℓ2

)∣∣∣∣ .
The inequality uses the fact that by Assumption 2, CovN

(
X2

t Xt−ℓ1
Xt−ℓ2

,X2
τXτ−ℓ3Xτ−ℓ4

)
can only be non-zero if ℓ1 = ℓ2 and ℓ3 = ℓ4 or, with ℓ1 , ℓ2, if either ℓ3 = ℓ1 + τ − t

and ℓ4 = ℓ2 + τ − t or ℓ3 = ℓ2 + τ − t and ℓ4 = ℓ1 + τ − t.2 We also use |bt,ℓ| ≤ |bℓ|.

For the first double sum, now summing over t and τ,

T∑
t=1

T∑
τ=1

∞∑
ℓ1=1

∞∑
ℓ3=1

b2
ℓ1

b2
ℓ3

∣∣∣∣CovN

(
X2

t X2
t−ℓ1
,X2
τX

2
τ−ℓ3

)∣∣∣∣
≤ 2T

T−1∑
m=0

∞∑
ℓ1=1

∞∑
ℓ3=1

C̄2
ℓ1

C̄2
∣∣∣∣CovN

(
X2

t X2
t−ℓ1
,X2

t−mX2
t−m−ℓ3

)∣∣∣∣
≤ 2TC̄2

∞∑
ℓ1=1

C̄2
ℓ1

 ∞∑
j1=−∞

∞∑
j2=−∞

∣∣∣∣CovN

(
X2

t X2
t−ℓ1
,X2

t−mX2
t−m−ℓ3

)∣∣∣∣


2This is similar to the proof of Montiel Olea and Plagborg-Møller (2021, Lemma A.6)

8



≤ 2TC̄2K̄
∞∑
ℓ1=1

C̄2
ℓ1
≤ 2TC̄4K̄

for some constant K̄ that can be shown to exist as by Assumption 3(iii) the fourth-

order cumulants of X2
t conditional on {θi, si}

N
i=1 are absolutely summable.

Turning to the second double sum, by Assumption 2, since ℓ1 , ℓ2,∣∣∣∣CovN

(
X2

t Xt−ℓ1
Xt−ℓ2

,X2
τXτ−ℓ1Xτ−ℓ2

)∣∣∣∣ = ∣∣∣∣EN

[
X2

t X2
τX

2
t−ℓ1

X2
t−ℓ2

]∣∣∣∣ ≤ EN

[
X8

t

]
≤M8,

where M8 is the moment bound from Assumption 3(i). Then,

2
T∑

t=1

T∑
τ=1

∞∑
ℓ1=1

∑
ℓ2,ℓ1

|bℓ1bℓ2bℓ1+τ−tbℓ2+τ−t|

∣∣∣∣CovN

(
X2

t Xt−ℓ1
Xt−ℓ2

,X2
τXt−ℓ1

Xt−ℓ2

)∣∣∣∣
≤ 4TM8

T−1∑
m=0

∞∑
ℓ1=1

∑
ℓ2,ℓ1

|bℓ1bℓ2bℓ1+mbℓ2+m|

≤ 4TM8

∞∑
ℓ1=1

∞∑
ℓ2=1

|bℓ1 ||bℓ2 |

 ∞∑
m=0

|bℓ1+m||bℓ2+m|


≤ 4TM8

∞∑
ℓ1=1

∞∑
ℓ2=1

|bℓ1 ||bℓ2 |

 ∞∑
m1=1

|bm1
|
2
∞∑

m2=1

|bm2
|
2


1/2

≤ 4TC̄4M8,

where the second inequality increases the range of summation over ℓ2 and m, the

third uses Cauchy-Schwarz and the fourth follows from Assumption 3(iv).

Putting these calculations together and using g(κ) ≥ 1,∑T
t=1

∑T
τ=1

∣∣∣ΓT,1111(t, τ)
∣∣∣

(T − h)2 ≤
T × 2C̄4(K̄ + 2M8)

g(κ4
T/N

2)(T − h)2 ≤
2C̄4(K̄ + 2M8)

(1 − h/T)(T − h)
.

In fact, the same bound works for
∑T

t=1
∑T
τ=1

∣∣∣ΓT,k1k1k3k3
(t, τ)

∣∣∣ for any k1, k3 ∈ {1, 2, 3}.

Next consider k1 = k3 = 4:

g
(
κ4

T

N2

) ∣∣∣ΓT,4444(t, τ)
∣∣∣

(κ4
T/N

4)
=

∣∣∣∣∣∣∣∣CovN


 N∑

i=1

∞∑
ℓ=1

dit,ℓXtui,t−ℓ


2

,

 N∑
i=1

∞∑
ℓ=1

diτ,ℓXτui,τ−ℓ


2
∣∣∣∣∣∣∣∣

9



=

∣∣∣∣∣∣ N∑
i1=1

N∑
i2=1

N∑
i3=1

N∑
i4=1

∞∑
ℓ1=1

∞∑
ℓ2=1

∞∑
ℓ3=1

∞∑
ℓ4=1

di1t,ℓ1
di2t,ℓ2

di3τ,ℓ3
di4τ,ℓ4

× CovN

(
X2

t ui1,t−ℓ1
ui2,t−ℓ2

,X2
τui3,τ−ℓ3

ui4,τ−ℓ4

) ∣∣∣∣∣∣
≤

N∑
i1=1

N∑
i3=1

∣∣∣∣∣∣ ∞∑
ℓ1=1

∞∑
ℓ2=1

∞∑
ℓ3=1

∞∑
ℓ4=1

di1t,ℓ1
di1t,ℓ2

di3τ,ℓ3
di3τ,ℓ4

× CovN

(
X2

t ui1,t−ℓ1
ui1,t−ℓ2

,X2
τui3,τ−ℓ3

ui3,τ−ℓ4

) ∣∣∣∣∣∣
+

N∑
i1=1

N∑
i2=1

∣∣∣∣∣∣ ∞∑
ℓ1=1

∞∑
ℓ2=1

∞∑
ℓ3=1

∞∑
ℓ4=1

di1t,ℓ1
di2t,ℓ2

di1τ,ℓ3
di2τ,ℓ4

× CovN

(
X2

t ui1,t−ℓ1
ui2,t−ℓ2

,X2
τui1,τ−ℓ3

ui2,τ−ℓ4

) ∣∣∣∣∣∣
+

N∑
i1=1

N∑
i2=1

∣∣∣∣∣∣ ∞∑
ℓ1=1

∞∑
ℓ2=1

∞∑
ℓ3=1

∞∑
ℓ4=1

di1t,ℓ1
di2t,ℓ2

di2τ,ℓ3
di1τ,ℓ4

× CovN

(
X2

t ui1,t−ℓ1
ui2,t−ℓ2

,X2
τui2,τ−ℓ3

ui1,τ−ℓ4

) ∣∣∣∣∣∣.
The inequality uses the fact that CovN

(
X2

t ui1,t−ℓ1
ui1,t−ℓ2

,X2
τui3,τ−ℓ3

ui3,τ−ℓ4

)
can only be

non-zero if i1 = i2 and i3 = i4, or i1 = i3 and i2 = i4, or i1 = i4 and i2 = i3.

Summing over t and τ and applying to each of the three summands on the right

hand side the same steps as the case k1 = k3 = 1,∑T
t=1

∑T
τ=1

∣∣∣ΓT,4444(t, τ)
∣∣∣

(T − h)2 ≤
3N2
× κ4

T/N
4
× 2C̄4(K̄ + 2M8)

g(κ4
T/N

2)(1 − h/T)(T − h)
≤

6C̄4(K̄ + 2M8)
(1 − h/T)(T − h)

.

Repeating the calculation for the remaining cases (and noting that this bound

is three times larger than the one we computed for k1 = k3 = 1) we conclude that

6C̄4(K̄+2M8)/(1−h/T)(T−h) works for any k1, k3 ∈ {1, 2, 3, 4, 5}. By similar reasoning,

the bound also works for
∑T

t=1
∑T
τ=1 ΓT,k1k2k1k2

(t, τ) whenever k1 , k2. We then get∑T
t=1

∑T
τ=1 ΓT(t, τ)

(T − h)2 ≤
V̄

(T − h)
,

10



where V̄ = 75× 6C̄4(K̄+ 2M8)/(1− h/T) does not depend on κT (75 is the number of

covariances in (B.2)). This establishes
∑T

t=1 χT,t(h, κT)2 = 1 + oPκT
(1). □

Lemma 5. Under the conditions of Lemma 1,

lim
T→∞

T∑
t=1

EκT

[
χ4

T,t

]
= 0.

Proof. Using the notation of Lemma 4 and Loève’s inequality,

EN

[
χ̄T,t(h, κT)4

]
≤ 53

5∑
k=1

EN

[
ζ4

k,t

]
. (B.3)

Each of the five terms in (B.3) is under Assumption 3(i)–(iv) bounded by a constant

that does not depend on κT. For k = 1,

g
(
κ4

T

N2

)
EN

[
ζ4

1,t

]
= EN


 ∞∑
ℓ=1

bt,ℓXtXt−ℓ

4
≤

∞∑
ℓ1=1

∞∑
ℓ2=1

∞∑
ℓ3=1

∞∑
ℓ4=1

|bt,ℓ1
bt,ℓ2

bt,ℓ3
bt,ℓ4
|

∣∣∣∣EN

[
X4

t Xt−ℓ1
Xt−ℓ2

Xt−ℓ3
Xt−ℓ4

]∣∣∣∣
≤M8

∞∑
ℓ1=1

∞∑
ℓ2=1

∞∑
ℓ3=1

∞∑
ℓ4=1

|bℓ1bℓ2bℓ3bℓ4 | ≤M8

 ∞∑
ℓ=1

|bℓ|

4

≤M8C̄4,

where C̄ is the constant we defined in the first part. The same bound works for

k = 2 and k = 3 in (B.3). For k = 4,

g
(
κ4

T

N2

) EN

[
ζ4

4,t

]
(κ4

T/N
4)
= EN


 N∑

i=1

∞∑
ℓ=1

dit,ℓXtui,t−ℓ


4

≤

N∑
i1=1

N∑
i2=1

N∑
i3=1

N∑
i4=1

∞∑
ℓ1=1

∞∑
ℓ2=1

∞∑
ℓ3=1

∞∑
ℓ4=1

|di1t,ℓ1
di2t,ℓ2

di3t,ℓ3
di4t,ℓ4
|

×

∣∣∣∣EN

[
X4

t ui1,t−ℓ1
ui2,t−ℓ2

ui3,t−ℓ3
ui4,t−ℓ4

]∣∣∣∣
≤ 3

N∑
i1=1

N∑
i2=1

∞∑
ℓ1=1

∞∑
ℓ2=1

|d2
i1t,ℓ1

d2
i2t,ℓ2
|

∣∣∣∣EN

[
X4

t u2
i1,t−ℓ1

u2
i2,t−ℓ2

]∣∣∣∣
11



≤ 3N2M8

∞∑
ℓ1=1

∞∑
ℓ2=1

d2
ℓ1

d2
ℓ2
≤ 3N2M8C̄4,

where the second inequality uses that for EN

[
X4

t ui1,t−ℓ1
ui2,t−ℓ2

ui3,t−ℓ3
ui4,t−ℓ4

]
to be non-

zero we need i1 = i2 and i3 = i4, or i1 = i3 and i2 = i4, or i1 = i4 and i2 = i3 because of

Assumptions 1(ii) and 2. The same bound applies to k = 5 in (B.3).

Putting these bounds together,

T∑
t=1

EN

[
χT,t(h, κT)4

]
=

∑T
t=1 EN

[
χ̄T,t(h, κT)4

]
g(κ4

T/N
2)

(T − h)2V(h, κT)2 ≤
9M8C̄4g(κ4

T/N
2)

(1 − h/T)(T − h)V(h, κ2
T)2 .

Since V(h, κT)2/g(κ4
T/N

2) ≥ CM2 > 0, using iterated expectations we conclude that∑T
t=1 EκT

[
χT,t(h, κT)4

]
= o(1) where the convergence is uniform over κT. □

Lemma 6. Under the conditions of Lemma 2,

T−h∑
t=1

X2
t ξt(h, κT)2

− EκT

[
X2

t ξt(h, κT)2
∣∣∣{θi, si}

N
i=1

]
(T − h)g(κ2

T/N)

p
−−−−−→

PκT

0.

Proof. The proof is analogous to that of Lemma 4. We will show that for a constant

V̄ independent of κT, VarN,κT

(∑T
t=1 X2

t ξt(h, κT)2/g(κ2
T/N)

)
≤ V̄(T − h). By iterated

expectations and Chebyshev’s inequality it will follow that, for any ε > 0,

PκT


∣∣∣∣∣∣∣

T∑
t=1

X2
t ξt(h, κT)2

− EN,κT

[
X2

t ξt(h, κT)2
]

(T − h)g(κ2
T/N)

∣∣∣∣∣∣∣ > ε
 ≤ V̄
ε2(T − h)

→ 0.

We can write

Xtξt(h, κT) =
∞∑
ℓ=0

ιℓ(h)β̄ℓXtXt+h−ℓ +

∞∑
ℓ=0

γ̄ℓXtZt+h−ℓ +
κT

N

N∑
i=1

∞∑
ℓ=0

ŝiδiℓXtui,t−ℓ

=

∞∑
ℓ=0

bℓXtXt+h−ℓ︸           ︷︷           ︸
≡g(κT/

√
N)ζ1,t

+

∞∑
ℓ=0

cℓXtZt+h−ℓ︸          ︷︷          ︸
≡g(κT/

√
N)ζ2,t

+
κT

N

N∑
i=1

∞∑
ℓ=0

diℓXtui,t+h−ℓ︸                      ︷︷                      ︸
≡g(κT/

√
N)ζ3,t

. (B.4)

for some coefficients {bℓ, cℓ, {diℓ}
N
i=1} that depend on {θi, si}

N
i=1 (and h). By Assumption

3(iv), we have |bℓ|, |cℓ|, |diℓ| ≤ Cℓ almost surely for some positive finite constants Cℓ

12



such that C =
∑
∞

ℓ=1 Cℓ < ∞. Note that the coefficients, constants and variables ζ1,t,

ζ2,t, ζ3,t are different from the ones in the proof of Lemma 4.

Consider the variance

VarN,κT

 T∑
t=1

X2
t ξt(h, κT)2

g(κ2
T/N)

 = T−h∑
t=1

T−h∑
τ=1

ΓT(t, τ)

where (omitting the dependence on h, κT and {θi, si}
N
i=1)

ΓT(t, τ) = CovN,κT

X2
t ξt(h, κT)2

g(κT/
√

N)
,

X2
τξτ(h, κT)2

g(κT/
√

N)

 .
As in the proof of Lemma 4, we expand the square of X2

t ξt(h, κT)2 to express ΓT(t, τ)

as the sum of covariancesΓT,k1k2k3k4
(t, τ) = CovN,κT

(
ζk1,t
ζk2,t
, ζk3,τ

ζk4,τ

)
where k1, k2, k3, k4

range over the three terms in (B.4). If k1 = k2, ΓT,k1k2k3k4
(t, τ) can only be non-zero if

k3 = k4, while if k1 , k2, only if either k1 = k3 and k2 = k4 or k1 = k4 and k2 = k3. Then,

∣∣∣ΓT(t, τ)
∣∣∣ = 3∑

k1=1

3∑
k2=1

3∑
k3=1

3∑
k4=1

∣∣∣ΓT,k1k2k3k4
(t, τ)

∣∣∣
=

3∑
k1=1

3∑
k3=1

∣∣∣ΓT,k1k1k3k3
(t, τ)

∣∣∣ + 2
3∑

k1=1

3∑
k2=1

∣∣∣ΓT,k1k2k1k2
(t, τ)

∣∣∣ . (B.5)

By calculations similar to that of Lemma 4, for any k1, k2, k3 ∈ {1, 2, 3},

T−h∑
t=1

T−h∑
τ=1

∣∣∣ΓT,k1k1k3k3
(t, τ)

∣∣∣ ≤ 6C4(K̄ + 2M8) × (T − h),

T−h∑
t=1

T−h∑
τ=1

∣∣∣ΓT,k1k2k1k2
(t, τ)

∣∣∣ ≤ 6C4(K̄ + 2M8) × (T − h).

We therefore arrive at

T∑
t=1

T∑
τ=1

ΓT(t, τ) ≤ V̄(T − h),

with V̄ = 27 × 6C4(K̄ + 2M8) independent of κT (27 is the number of terms in (B.5)).

Hence, {(T − h)g(κ2
T/N)}−1 ∑T

t=1

(
X2

t ξt(h, κT)2
− EN,κT

[
X2

t ξt(h, κT)2
])
= oPκT

(1). □
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Lemma 7. Under the conditions of Lemma 2,

T−h∑
t=1

[(
N−1 ∑N

i=1 x̂it(h)ξ̂it(h)
)
− Xtξt(h, κT)

]2

(T − h)g(κ2
T/N)

p
−−−−−→

PκT

0.

Proof. We begin by writing

x̂it(h) = ŝi(Xt − X̂t(h)), X̂t(h) = X̄0(h) + π̂X(h)′x̄t(h), (B.6)

with X̄0(h), π̂X(h) and x̄t(h) = (Xt−1−X̄1(h), . . . ,Xt−p−X̄p(h))′ as in the proof of Lemma

3. As argued, X̄0(h) = OPκT

(
(T − h)−1/2

)
and π̂X(h) = OPκT

(
(T − h)−1/2

)
.

Next, we write η̂(h)′Wit = η̂0,i(h)+ η̂X(h)′x̄t(h)ŝi and ηX,ih = (βi,h+1, . . . , βi,h+p)′ so that

ξ̂it(h) − ξit(h, κT) =

µi − η̂0,i(h) +
p∑
ℓ=1

βi,h+ℓX̄ℓ(h)

 + (βih − β̂(h)ŝi)Xt + (ηX,ih − η̂X(h)ŝi)
′x̄t(h)

and we note β̂(h)

η̂X(h)

 =
T−h∑

t=1

Xt − X̄0(h)

x̄t(h)


Xt − X̄0(h)

x̄t(h)


′
−1 T−h∑

t=1

Xt − X̄0(h)

x̄t(h)

 Ŷt+h

=

 β̃(h)

η̃X(h)

 +
T−h∑

t=1

Xt − X̄0(h)

x̄t(h)


Xt − X̄0(h)

x̄t(h)


′
−1 T−h∑

t=1

Xt − X̄0(h)

x̄t(h)

 ξt(h, κT)

(N−1 ∑N
i=1 ŝ2

i )

where Ŷt+h = (
∑N

i=1 ŝ2
i )−1 ∑N

i=1 ŝiYi,t+h and η̃X(h) = (
∑N

i=1 ŝ2
i )−1 ∑N

i=1 ŝiηX,ih. Since the least

squares denominator matrix when scaled by (T − h)−1 converges to E
[
X2

t

]
× Ip+1 in

probability uniformly over κT, the calculations in Lemma 3 imply that

(N−1 ∑N
i=1 ŝ2

i )(β̂(h) − β̃(h))

g(κT/
√

N)
= OPκT

(
(T − h)−1/2

)
,

(N−1 ∑N
i=1 ŝ2

i )(η̂X(h) − η̃X(h))

g(κT/
√

N)
= OPκT

(
(T − h)−1/2

)
.

Because Wit includes unit effects,
∑N

i=1 x̂it(h)(η̂0,i(h) − µi +
∑p
ℓ=1 βi,h+ℓX̄ℓ(h)) = 0 and,

N−1
N∑

i=1

x̂it(h)(ξ̂it(h) − ξit(h, κT)) =

N−1
N∑

i=1

ŝ2
i

 (β̃(h) − β̂(h))Xt(Xt − X̂t(h))
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+

N−1
N∑

i=1

ŝ2
i

 (η̃X(h) − η̂X(h))′x̄t(h)(Xt − X̂t(h)). (B.7)

To prove the Lemma, add and subtract N−1 ∑N
i=1 x̂it(h)ξit(h, κT) within the squares

and use Loève’s inequality to obtain

T−h∑
t=1

[(
N−1 ∑N

i=1 x̂it(h)ξ̂it(h)
)
− Xtξt(h, κT)

]2

(T − h)g(κ2
T/N)

≤ 2DπT,2(h, κT) + 2DηT,2(h, κT),

where

DπT,2(h, κT) =
T−h∑
t=1

[
N−1 ∑N

i=1(ŝiXt − x̂it(h))ξit(h, κT)
]2

(T − h)g(κ2
T/N)

,

DηT,2(h, κT) =
T−h∑
t=1

[
N−1 ∑N

i=1 x̂it(h)(ξ̂it(h) − ξit(h, κT))
]2

(T − h)g(κ2
T/N)

.

Inserting (B.6) into the first term and using Loève’s inequality,

DπT,2(h, κT) ≤ 2

X̄0(h)2
∑T−h

t=1 ξt(h, κT)2

(T − h)g(κ2
T/N)

+ ∥π̂X(h)∥2
∑T−h

t=1 ∥x̄t(h)ξt(h, κT)∥2

(T − h)g(κ2
T/N)

 ,
where ∥ · ∥ is Euclidean norm. From calculations similar to those in Lemma 3,∑T−h

t=1 ξt(h, κT)2

(T − h)g(κ2
T/N)

= OPκT
(1) and

∑T−h
t=1 ∥x̄t(h)ξt(h, κT)∥2

(T − h)g(κ2
T/N)

= OPκT
(1) ,

which allows us to conclude that DπT,2(h, κT) = oPκT
(1).

Inserting (B.7) into the second term and using Loève’s inequality,

DηT,2(h, κT) ≤ 2


 (N−1 ∑N

i=1 ŝ2
i )(β̃(h) − β̂(h))

g(κT/
√

N)

2 ∑T−h
t=1 X2

t (Xt − X̂t(h))2

T − h

+

∥∥∥∥∥∥
 (N−1 ∑N

i=1 ŝ2
i )(η̃X(h) − η̂X(h))

g(κT/
√

N)

∥∥∥∥∥∥
2 ∑T−h

t=1 ∥x̄t(h)(Xt − X̂t(h))∥2

T − h

 .
Under Assumption 3(i), we can show that (T − h)−1 ∑T−h

t=1 X2
t (Xt − X̂t(h))2 = OPκT

(1)

and (T − h)−1 ∑T−h
t=1 ∥xt(h)(Xt − X̂t(h))∥2 = OPκT

(1). Thus, DηT,2(h, κT) = oPκT
(1). □
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Proposition 2

Parts (A), (B) and (C) of the proof of Proposition 2 in Appendix A are established in

Lemmas 8, 9 and 10 below. The argument closely resembles the proof of Proposition

1 and, therefore, in order to conserve space we only sketch the steps. Again, we

adopt Assumptions 1, 2 and 3, we fix p and assume hT/T ≤ ϕ < 1 as T,N→∞.

Lemma 8 (Asymptotic normality of the score).∑T−hT
t=1 Xtξt(hT, κT)√
(T − hT)V(hT, κT)

d
−−−−−→

PκT

N(0, 1).

Proof. The proof given for Lemma 1 goes through with the following adjustment:

we can remove the terms β̄ℓ, γ̄ℓ, δiℓ from ΞX,t(h, κ) whenever ℓ > h. That is, we set

ΞX,t(h, κ) =
h∑
ℓ=1

1{t − ℓ ≥ 1}β̄h−ℓXt−ℓ + 1{t ≤ T − h}

γ̄hZt +
κ
N

N∑
i=1

ŝiδihuit

 .
The calculations in Lemmas 4 and 5 apply with the same adjustment. In Lemma

4, V̄ ≤ 75 × 6C8(K̄ + 2M8)/(1 − ϕ), which does not depend on κT or hT. Similarly,

in Lemma 5,
∑T

t=1 EN

[
χT,t(hT, κT)4

]
≤ 9M8C8/(1 − ϕ)2CM2T, which tends to zero as

T→∞ uniformly over κT and hT. □

Lemma 9 (Consistency of the standard error).

V̂(hT)
V(hT, κT)

p
−−−−−→

PκT

1.

Proof. The proofs of Lemma 2 and auxiliary Lemma 6 go through without change.

To establish the equivalent to Lemma 7 in this context, define x̄t(hT) as in its proof

and let ȳit(hT) = (Ŷi,t−1(hT), . . . , Ŷi,t−p(hT)) with Ŷi,t−ℓ(hT) the residual from regressing

g(κT)−1Yi,t−ℓ on unit and time effects. We can write

π̂(hT)′Wit = ŝiX̄0(hT) + ŝiπ̂X(hT)′x̄t(hT) + π̂Y(hT)′ ȳit(hT),

η̂(hT)′Wit = η̂0,i(hT) + ŝiη̂X(hT)′x̄t(hT) + η̂Y(hT)′ ȳit(hT).

Scaling Yi,t−ℓ by g(κT)−1 leaves the least square predictions π̂(hT)′Wit and η̂(hT)′Wit

unchanged, but it helps bound them in probability uniformly over κT.
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Calculations similar to those in Lemma 3 deliver
X̄0(hT)

π̂X(hT)

π̂Y(hT)

 = OPκT

(
(T − hT)−1/2

)
,

g
(
κT
√

N

)−1


(β̂(hT) − β̃(hT))

(η̂X(hT) − η̃X(hT))

(η̂Y(hT) − η̃Y(hT))

 = OPκT

(
(T − hT)−1/2

)
,

where η̃X(hT) = (B̃1(hT), . . . , B̃p(hT))′ and η̃Y(hT) = g(κT)(A1(hT), . . . ,Ap(hT))′ with

Aℓ(h) and B̃ℓ(h) as defined in the proof of Proposition 2 in Appendix A.

The rest of the proof follows the steps of Lemma 7. The convergence is uniform

in both κT and hT because T − hT ≤ (1 − ϕ)T with ϕ < 1. □

Lemma 10 (Negligibility of the remainder).

RT(hT, κT)
p

−−−−−→
PκT

0.

Proof. We begin by defining x̄t(hT) and ȳit(h) as in Lemma 9, by writing

π̂(hT)′Wit = ŝiX̄0(hT) + ŝiπ̂X(hT)′x̄t(hT) + π̂Y(hT)′ ȳit(hT),

and by noting again that 
X̄0(hT)

π̂X(hT)

π̂Y(hT)

 = OPκT

(
(T − hT)−1/2

)
.

Next, we write rit(hT) = (βih − β̃(h)ŝi)Xt +
∑p
ℓ=1(Biℓ(h) − B̃ℓ(h)ŝi)Xt−ℓ and

RT(hT, κT) = −
X̄0(hT)

∑T−hT
t=1 ξt(hT, κT)√

(T − hT)V(hT, κT)
−
π̂X(hT)′

∑T−hT
t=1 x̄t(hT)ξt(hT, κT)√

(T − hT)V(hT, κT)

−
π̂Y(hT)′

∑N
i=1

∑T−hT
t=1 ȳit(hT)(rit(hT) + ξit(hT, κT))

N
√

(T − hT)V(hT, κT)

The rest of the argument mimics the proof of Lemma 3. □
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Proposition 3

Parts (A), (B) and (C) of the proof of Proposition 3 in Appendix A are stated in

Lemmas 11, 12 and 13 below. The proofs are virtually identical to their counterparts

in Proposition 1 with some minor differences. Here we make Assumptions 4 and

we hold h and p ≥ h fixed as T,N→∞.

Lemma 11 (Asymptotic normality of the score).∑T−h
t=1 λ

′X∗tξt(h, κT)√
(T − h)λ′V(h, κT)λ

d
−−−−−→

PκT

N(0, 1).

Proof. The arguments given for Lemma 1 and auxiliary Lemmas 4 and 5 apply with

the obvious change in notation. □

Lemma 12 (Consistency of the standard error and OLS denominator).

λ′V̂ IV(h)λ
λ′V(h, κT)λ

p
−−−−−→

PκT

1 and ĴIV(h)
p

−−−−−→
PκT

J.

Proof. The first part follows from arguments analogous to those given for Lemma

2 and auxiliary Lemmas 6 and 7 (with obvious notational changes). For the second

part, note VarN,κT

(
X∗tX̃t

)
≤ V̄/(T − h) for some constant V̄ independent of κT under

Assumption 4(ii), so that
∥∥∥ĴIV(h) − J

∥∥∥ = oPκT
(1) follows from iterated expectations

and Chebyshev’s inequality. □

Lemma 13 (Negligibility of the remainder).

RT(h, κT)
p

−−−−−→
PκT

0.

Proof. For any λ , 0(p+1)×1, by the same calculations as in Lemma 3,∑T−h
t=1 λ

′X∗t
(T − h)

= OPκT

(
(T − h)−1/2

)
and

∑T−h
t=1 ξt(h, κT)√

(T − h)λ′V(h, κT)λ
= OPκT

(1) .

Since ĴIV(h) = J + oPκT
(1) by the second part of Lemma 12, the result follows. □
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C Details of simulation study

Here we complement Section 4 with additional details. First, we describe how we

simulate the heterogeneity. Second, we specify the calibration of our DGPs. Third

and last, we present further simulation results.

Simulation of observable and unobservable heterogeneity. A primary feature is

the correlation between si and {βi, γi.δi}.
3 We begin by drawing the vector

(si, sγ,i, sδ,i)
′
∼ N

(
13×1, (1 − ρ)I3 + ρ13×3

)
for some ρ , 0. Next, we set a very large L̄ and compute

βiℓ = siβ̆iℓ, γiℓ = sγ,iγ̆iℓ, δiℓ = sδ,iδ̆iℓ,

where {β̆iℓ, γ̆iℓ, δ̆iℓ}
L̄
ℓ=0 are obtained by (a) drawing the roots of ARMA polynomials

from Beta distributions, (b) computing their MA(∞) representations, (c) truncating

them at L̄, and (d) normalizing them so that
∑L̄
ℓ=0 β̆

2
iℓ =

∑L̄
ℓ=0 γ̆

2
iℓ =

∑L̄
ℓ=0 δ̆

2
iℓ = 1.4

To generate time-varying heterogeneity we set sit = si + ζit with ζit ∼ N(0, 1), i.i.d.

over units and time, and independent of si and everything else. This ensures sit

remains exogenous with respect to aggregate and idiosyncratic shocks.

Finally, in the VAR DGP, we set

Biℓ = siB̆iℓ, Ci0 = sγ,i, Di0 = sδ,i.

where {B̆iℓ}
L̄
ℓ=0 are obtained in the same way as {β̆iℓ}

L̄
ℓ=0 above.

Our method does not satisfy Assumption 3(iv), although responses are bounded

with sufficiently high probability that it does not seem to make a difference.

3Instead, µi (and mi in the VAR setup) does not play a big role and we simply draw it as N(0, 1).
4The advantage of this representation is that it separates the scale and persistence. For example, if

Xt is white noise with unit variance conditional on {βiℓ}
L̄
ℓ=0, the variance of

∑L̄
ℓ=0 βiℓXt−ℓ is

∑L̄
ℓ=0 β

2
iℓ = s2

i

while the ratio of long-run variance to variance of
∑L̄
ℓ=0 βiℓXt−ℓ (a measure of persistence) is(∑L̄

ℓ=0 βiℓ

)2

∑L̄
ℓ=0 β

2
iℓ

=

(∑L̄
ℓ=0 β̆iℓ

)2

∑L̄
ℓ=0 β̆

2
iℓ

,

which does not depend on si.
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DGP calibration. In the general DGP, we set ρ = 0.5, and generate {β̆iℓ, γ̆iℓ, δ̆iℓ}
L̄
ℓ=0

from ARMA(4, 2) processes with expected roots (0.7, 0.3, 0.2, 0.1) and (0, 0) for β̆iℓ,

(0.7, 0.2, 0.1,−0.2) and (0.2,−0.2) for γ̆iℓ, and (0.9, 0.3, 0.1, 0.1) and (0.5, 0.2) for δ̆iℓ.

We draw each root as Beta(λ̄ν, (1− λ̄)ν) where λ̄ is the mean listed above and ν = 10,

and we truncate polynomials at L̄ = 2T lags.

In the LP-IV case, we use a similar method for {bℓ, cℓ}
L̄
ℓ=0. We obtain bℓ from an

ARMA(1, 1) with roots 0.3 and −0.2, and cℓ from an ARMA(2, 2) with roots (0.4, 0.2)

and (0.1,−0.1). We also set a0 = 10 to be safely above standard weak IV thresholds.

Finally, for the VAR DGP, we draw {B̆iℓ}
p
ℓ=0 from an MA(2) with roots (0.8,−0.5)

and ν = 10, and we set {Aℓ}
p
ℓ=1 to an AR(2) with roots (1 − 5/T, 0.5).

The mean and quantiles of responses for each horizon can be seen in Figure C.1.

(a) General DGP. βih (b) General DGP. γih (c) General DGP. δih

(d) VAR DGP. βih (e) VAR DGP. γih (f) VAR DGP. δih

FIGURE C.1. Distributions of impulse responses across ℓ for general and VAR DGPs.
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Additional results. Figure C.2 presents coverage rates of 90% confidence intervals

in the general DGP with T = 100 for panel LPs on Xt (panels (a)-to-(c)) and on sitXt

(panels (d)-to-(f)).5 As mentioned in the paper, the estimands are different: LPs on

Xt recover the mean impulse response while LPs on sitXt recover their projection on

sit. Yet, the observations we made about inference from Section 4 are unchanged.

In particular, t-LAHR inference dominates all the alternatives in delivering correct

coverage for the nonparametric panel local projection estimand.

(a) LP on Xt. R̄2(κ) = 0.99
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(b) LP on Xt. R̄2(κ) = 0.66
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(c) LP on Xt. R̄2(κ) = 0.33
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(d) LP on sitXt. R̄2(κ) = 0.99
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(e) LP on sitXt. R̄2(κ) = 0.66
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(f) LP on sitXt. R̄2(κ) = 0.33
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FIGURE C.2. Coverage rates of 90% confidence intervals for T = 100.

Note: 1W refers to one-way (unit-level) clustering, 2W to two-way clustering, DK98 to Driscoll–Kraay,

and t-HR/t-LAHR/t-HAR to the time-level clustering approaches discussed in the text.

5For panel LPs on Xt time effects are excluded from the vector of controls. Otherwise, the estimation

and inference procedures are the same as in Figure 1 in the paper.
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D A survey of empirical applications

Below, we survey relevant empirical applications by the method used to calculate

standard errors. The list reflects the recent surge in applications (with the oldest

paper dated 2018) and includes both published work and working papers. We

have aimed to make the list comprehensive, but it is possible that some might

have been inadvertently omitted. When different methods were used, we favored

the one used in the main specification and the one used in estimation of dynamic

effects (non-zero horizons). We classified as one-way clustering (within units)

applications that cluster at a higher level of aggregation than primary units; say,

at the industry (or industry-time) level when units are firms. While allowing for

sector-level shocks, these still rule out economy-wide spatial dependence. See the

Introduction for additional details.

By method

Two-way clustering

(within units and time)

Ippolito, Ozdagli, and Perez-Orive (2018), Jeenas (2019), Ottonello and

Winberry (2020), Amberg, Jansson, Klein, and Rogantini Picco (2022),

Palazzo and Yamarthy (2022), Paz (2022), Bellifemine, Couturier, and

Jamilov (2023), Cascaldi-Garcia, Vukotić, and Zubairy (2023), Drechsel

(2023), Durante, Ferrando, and Vermeulen (2022), Duval, Furceri, Lee, and

Tavares (2023), Ferreira, Ostry, and Rogers (2023), González, Nuño, Thaler,

and Albrizio (2023), Lakdawala and Moreland (2023), Singh, Suda, and Zer-

vou (2023), Thürwächter (2023), Zhou (2023), Anderson and Cesa-Bianchi

(2024), Berthold, Cesa-Bianchi, Di Pace, and Haberis (2024), Caglio, Darst,

and Kalemli-Özcan (2024), Camêlo (2024), Gulyas, Meier, and Ryzhenkov

(2024), Paranhos (2024), Lakdawala and Moreland (forthcoming)

Clustering within units Wu (2018), Ozdagli (2018), Crouzet and Mehrotra (2020), Singh, Suda, and

Zervou (2022), Albrizio, González, and Khametshin (2023), Andersen, Jo-

hannesen, Jørgensen, and Peydró (2023), Camara and Ramirez Venegas

(2023), Ghomi (2023), Indarte (2023), Bardóczy, Bornstein, Maggi, and Sal-

gado (2024), Jeenas (2024), Jeenas and Lagos (2024), Lo Duca, Moccero, and

Parlapiano (2024), Paranhos (2024), Ruzzier (2024)

Driscoll and Kraay (1998)

standard errors

Holm, Paul, and Tischbirek (2021), Bahaj, Foulis, Pinter, and Surico (2022),

Cloyne, Ferreira, Froemel, and Surico (2023), Fagereng, Gulbrandsen,

Holm, and Natvik (2023), Gorea, Kryvtsov, and Kudlyak (2023), Bilal and

Känzig (2024), Cao, Hegna, Holm, Juelsrud, König, and Riiser (2024)

Clustering within time Gürkaynak, Karasoy-Can, and Lee (2022)
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