SUPPLEMENTAL MATERIAL
Micro responses to macro shocks

z 7 7’ 'I'
MARTIN ALMUZARA"® ViCcTOR SANCIBRIAN

This version: August 2024
[Link to the paper]

B Additional proofs

We adopt the following notation in the proofs below. We use Py, Ey;, Vary, Covy to
denote probability, expectation, variance and covariance given {0,,s;}\, (we insert
a subindex x or x; when necessary).

With a slight abuse of nomenclature we sometimes call Loeve’s inequality to
the statement | Y7, X,|" < ¢, Y7, |X,| (with ¢, = 1if r < 1 and ¢, = m'™" otherwise)
where X;, ..., X,, are random variables and notjust to E [| Y12y Xi|'] < ¢, Yimq E [IX]']
(which is implied by the former). See Davidson (1994, Theorem 9.28).

Without loss of generality we assume x > 0. We also define the scaling function

g(x) = max{1, x} and note that g(x)/x = g(K_l). In Proposition 1

V(h,x) Lo {‘5(}1)5%]51\1 [thxt2+h—t’] +7¢Ex [X?Zih—f]} N Yt Leito 803 En I:thulz,t+h—€:|
g(x*/N) g(x*/N) Ng(N/x%)

is bounded below by CM* > 0 and above by 3C*M, < oo for any « (and h). The same
applies to V(h, )/ g(K2 /N) in Proposition 2. In Proposition 3, tr{V(h, x)}/ g(K2 /N) is
bounded below by (a5 + 1)CM? > 0 and above by 6(p + 1)(aj + 1)C*M, < co.

“Federal Reserve Bank of New York: martin.almuzara@ny.frb.org

Y*CEMFT: victor.sancibrian@cemfi.edu.es


https://sancibrian-v.github.io/files/lp_panels.pdf
mailto: martin.almuzara@ny.frb.org
mailto: victor.sancibrian@cemfi.edu.es

Proposition 1

Parts (A), (B) and (C) of the proof of Proposition 1 in Appendix A are established
in Lemmas 1, 2 and 3 below. Lemmas 4 and 5 provide auxiliary results for Lemma
1, while 6 and 7 do the same for 2. At all times, we make Assumptions 1, 2 and 3

and we fix hand p > h as T, N — oo (note we do not need T/N — 0 here).

Lemma 1 (Asymptotic normality of the score).
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Proof. The argument relies on the martingale representation:
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Under Assumption 2, it can be readily verified that {xr,(h, Kk7)}, is a martingale

difference array adapted to the natural filtration {TT,t}thl,

Fri = 0 ((Xeo Zo 1) ecrr 165,
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that is, xr,(h, k1) is Fr,-measurable and E, [XT,t(h/ KT)|7:T,t_1] =0.

By construction, Y E.. [)(T,t(h, KT)Z] = 1 and we can show (Lemmas 4 and 5)

T T
Y xrilhr) —— land Jim X; E.. [, k)] = 0.
T =

t=1

By Davidson (1994, Theorems 23.11, 23.16 and 24.3), the Lemma follows.
Lemma 2 (Consistency of the standard error).
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Proof. Since V(h, kr) > 0 holds P,_-a.s., it suffices to show that
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where we have defined

= D1, (h, k1) + Dry(h, x7),
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Next, using (* - yz) = (x — y)(x + y) and the Cauchy-Schwarz inequality,
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. (N7 £, E ) + X, &, wep)|
Dialh,kr) =) R .

t=1

Adding and subtracting X,&,(h, k7) within the squares in D7,(h, k1) and applying
Loeve’s inequality,

8V(h,xr)

g(k3/N)

We can show (Lemmas 6 and 7) that Dy, (h, x7) = 0p (1) and Dr,(h, x7) = 0op (1).

K ’ K
Given that V(h, 1)/ g(K% /N)is bounded P, -a.s., Dz,(h, k1) = Op (1) which implies
KT
Dyy(h, 1) = 0p (1) and the Lemma follows. O
kT

D7,(h, k1) < 2D75(h, k1) + 8Dy (B, k1) +

Lemma 3 (Negligibility of the reminder).

Ry(h,7) —— 0.

K

Proof. Let ,(h) = (X, — Xy (h), ..., X,_, = X,(0)) where X,(h) = (T =) T3 X,._,.

Since either $; was demeaned or time effects were not included as controls,

1=

ft(hy Wy, = fro;(h) + ) fry ()8, X,_, = 8; (Xo(h) + fry(h) %,(h)),

=1
where {7t (h)}, Tix(h) = (Tt (h), ..., ﬁX,p(h))' are the coefficients from the regression
of 5;X, on unit fixed effects and p lags of 3,X,. Furthermore, it is readily seen that

ftx(h) are also the coefficients in a regression of X, on %,(h),

Z %)%, (Y

Note that E [X, ] = E[X, X,] = 0 and that Var (L5 X, ), Var (£, X, ,X,) are
bounded by a constant (M, and M4, respectlvely) times (T — h) under Assumptions
1,2 and 3. Also note that (T - h)™ L5 %,()%,(h)’ = E[X7| X I, + 0p. (1). All of this

is independent of . It follows that

"

Z 7, ()X,

t=1

Xy = Op (T -1)72),  fix(h) = O ((T—H)"2).



Write
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Re(h, x7) = -
D = v VT =)Vl k)

To obtain Ry(h, k7)) = 0p (1), we show {(T — )V, k) > YL, &1 xp) = Op (1)
kT kT
and {(T — h)V(h, k7)) Y % (W&, kp) = Op_(1). We do so by direct calculation.
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where the last line uses Assumption 3(i)—(iv)." By iterated expectations and Cheby-

shev’s inequality, for any ¢ > 0,
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"We also used the fact that for any linear process w; = Yo @€ Where {@,} are absolutely summable

and {¢,} is white noise with E [¢,] =0 and E [et] =1,
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where the bound on (2 + KZT/N)/V(h, k) = ((2+ K%/N)/g(K%/N)) X (g(K%/N)/V(h K1)
uses (2 + «)/g(x) < 3 and V(h, x;)/g(x7/N) = CM?.

Similarly forany k=1,...,p,
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<(T-h)

< (T -h) x (4 + x7/N)C*M,,
where we used the autocovariances of X, ;&,(h, k) and Assumption 3(i)—(iv) again

By iterated expectations and Chebyshev, for any ¢ > 0
Yo X, & (h k) (4 + K§/N)C4M4] 1 5C*M,
)
€
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V(T =)V, xr) ] g2 ' V(h, xr) CM?

Thus, Ry(h, k) = 0p_(1) and the Lemma follows.

< 090,

Lemma 4. Under the conditions of Lemma 1

T
Y k)’ —— 1.
t=1

s

Proof. We show Vary, (Zthl xre(h, KT)Z) < V/(T - h) for a constant V independent
of k7. Since Ey . [Zthl Xr(h, KT)Z] = 1, by iterated expectations and Chebyshev’s

inequality, for any ¢ > 0,
T
> E] =E.. PN’KT( > e]]
t=1
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T
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t=1
<——-0
e*(T - h)
As argued at the beginning of the section, V(h, )/ g(K2 /N) is bounded away from

Y X =1
zero and infinity uniformly over «. Thus, it suffices to show
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P, -a.s., for some constant V independent of x;. We do this by a direct calculation.

. 1/2
Define xr,(h, k1) = xr:(h, xr) {(T —h)V(h,x7)/ g(K%/N)} so that

N

Kr | _ _ _
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for some {b,,c;(, € o {dys p, cfit,é;}ﬁl} that depend on {0, si}f\:’1 (and h). Note that the
coefficients depend on t only via the indicator functions 1{t — £ < 1} and 1t < T — h}.
It will be convenient to define {b,, c,, ¢, {d, ,, d}lf}ﬁl} as the coefficients we would get
by setting the indicators to one. This implies |b,,| < |b/, Ic; (| < |c,|, and so on.
By Assumption 3(iv), |b,l, Ic,l, 1E.1, 1d;], IJMI < C, almost surely for finite constants C,
such that C = Y72, C, < oo (in fact, we can take C < C* independent of ).

Consider the variance

Var ZT: V()i n)* | N Yo Tr(t 0
VS 8GN (T —hy?

where (omitting the dependence on &, x; and {0;,5,}Y,)

I'r(t 1) = COVN,KT(XT,t(h/ K1)’ Xr(h, KT)Z) :

Expanding the square of ¥;,(h, k) and using the linearity of the covariance we can
express I'z(t, 7) as the sum of covariances I'ry i (£, 7) = COVN,KT(Ckl,tCkZ,tf Ck3,TCk4,T)
where ki, k,, ky, k, range over the five terms in (B.1). Moreover, if k; = k,,

U7k kkgk, (B T) can only be non-zero if k; = k,, while if k; # k,, only if either k; = k;



and k, = k, or k; = k, and k, = k;. Then, by the triangle inequality,

5 5 5

5
Tt )| = Z Z Z Z L7k kykgk, (B T)

k=1 k=1 ks=1k,=1

5 5 5 5
= Z Z |FT,k]k1k3k3 (t, T)| +2 Z Z |rT,k1k2k]k2 (t, T)| . (B.2)

k=1 k;=1 k=1 k,=1

We begin with Y, Y1, U7k i kok, (8 7). Consider ky = k; = 1:

4 ) 2 0 2
g (%) |FT,1111(t/ T)| = COVN((Z bt,fxtXt—é’) ’ [Z bz,fxTXT—f]

o 00
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1=16,=1 6,=1 £,=1

Y Y 1242 [Cony (1032, 300, )
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+ ZZ Z 1be, b, by, o ibiy o] ICOVN(XtZXt—QXt—Q/Xixt—elxt—fg) .

6,=16,%0,

The inequality uses the fact that by Assumption 2, COVN(X Xi—e, Xi—t, XX, 6, K- 54)
can only be non-zero if {; = ¢, and {3 = {, or, with £, # (,, if either {; = {;, + Tt
and {, =6, +T1—torly =0, +1—tand £, = £, + T — t.”> We also use by | < |byl.

For the first double sum, now summing over t and 7,

i ZT‘ i i by b, ’CovN(XtZXf_g ,X2X2, )|

<2T ii C? |Cova(XEXE,, X2, XE 0,

< 2TC? Z i i ‘COVN(XthZ_g X X 53)
=

J1=—00 jp=—00

*This is similar to the proof of Montiel Olea and Plagborg-Meller (2021, Lemma A..6)



<2TC’R ) C; <2TC'R
=1

for some constant K that can be shown to exist as by Assumption 3(iii) the fourth-
order cumulants of X7 conditional on {0;,s,}Y, are absolutely summable.

Turning to the second double sum, by Assumption 2, since ¢; # ¢,,
[Covn(XeX g, X, XX,y Xy = B [XEXEXE X | < En[XE] < M,

where Mg is the moment bound from Assumption 3(i). Then,

T T oo
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t=1 1=1 £,=1 br#(,

T-1 oo

< 4TMy Z Z 1be,be,be, vmbe, ol
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6=16,=1 m=0

<4TM Y Y b llbe [ Y 15,2 Y 1B,
=1 {,=1 m;=1 my=1

< 4TC*Ms,

where the second inequality increases the range of summation over £, and m, the
third uses Cauchy-Schwarz and the fourth follows from Assumption 3(iv).

Putting these calculations together and using g(x) > 1,

Lia Zia ot 0] _ Tx 2GR +2Mp) _ 2GR +2My)
(T — h)? T (A NAD(T —hy? T (L=h/TNT - h)

In fact, the same bound works for Y'/_, ¥'1_, 'FT,k1k1k3k3(t/ ’C)| for any k;, k; € {1,2,3}.

Next consider k; = k; = 4:

K |rT,4444(t/ T)| N & Py, & ’
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i1=1 i,=1 i3=1 iy=1 £{;=1 £,=1 £3=1 ;=1
2
XCOVN(X uzlt fl ip b=y X u13"[ {’3 iy, T— €4)
N N 0 0 00
< z 2 | § l§ § 2 it zltf2 13I€3d131€4
ii=1 i3=1 1 ;=1 £,=1 {3=1 {,=1

2
X COVN(Xt Ui -0, Ui, 1-y X iy {’31’[13,1—54)

[o¢] [se] [e¢] [o¢]
2 2 2 | 2 it,€; lzt {’2 i, €3d121 ly
=1¢

2 2
X COVN<Xt Ui -, Wi p—t,r X'[uil,”(—t’3ui2,"(—€4)

o o0

[Se]
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6,=16,=1 £3=1 £,=1

2
><C:OVN(PQMZ t— t’] ip b=y X uzzr [’3 iy, T— 54)

The inequality uses the fact that COVN(Xt Ui r—e Ui 1t/ X2 Wiy g Wiy g ) can only be
non-zero if i; =i, and iy = iy, or iy = i and i, =iy, or i; = iy and i, = i,.

Summing over t and 7 and applying to each of the three summands on the right
hand side the same steps as the case k; = k; =1,

Yot Yoe [Traaa(t, 0| _ BN XKp/N' x 2CHR +2My) _ 6C*(R +2My)
(T — h)? T gk NHA-h/TYT-h) ~ A=h/T)(T-h)
Repeating the calculation for the remaining cases (and noting that this bound
is three times larger than the one we computed for k; = k; = 1) we conclude that
6C4(K+2M8)/(1 —h/T)(T-h)works for any k;, k; € {1,2, 3,4, 5}. By similar reasoning,
the bound also works for ¥/, ¥'1_, U7k ki, (B, T) whenever k; # k,. We then get

Zthl Zle U'r(t, 1) < 1%
(T - h)* “(T-hy
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where V = 75 x 6C*(K + 2My) /(1 — 1/ T) does not depend on «; (75 is the number of
covariances in (B.2)). This establishes Y/, xr(h, k) =1+ op_(1). O

Lemma 5. Under the conditions of Lemma 1,

T
lim » E, [)(‘%’t] =0.

T—oo
t=1

Proof. Using the notation of Lemma 4 and Loéve’s inequality,

5
Ey [XT,t(h/ KT)4] <5 Z Ey [Ci,t] . (B.3)
k=1

Each of the five terms in (B.3) is under Assumption 3(i)-(iv) bounded by a constant

that does not depend on x;. Fork =1,

< i i i i |bt,€1 bt,t’zbt,£’3bt,f4|
0 00 o0 o0 00 4
2529 39 W WCTAAREA ) o) R
=1

where C is the constant we defined in the first part. The same bound works for
k=2and k =3in (B.3). For k =4,
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=
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<BN*M, Y| Y d; d, < 3N?M,C,
1 %2
6=16,=1
where the second inequality uses that for E [Xfuillt_gluiwt_ o, Wi, Wi - 64] to be non-
zero we need i; =i, and i3 = iy, or i; = iy and i, = i,, or i; = i, and i, = i; because of
Assumptions 1(ii) and 2. The same bound applies to k = 5 in (B.3).
Putting these bounds together,

r Yo Ey [ (h )] g(1/N?) IMC (1% /N?)
4 - = * g 8K
2B [ini 0] = TV (= h/TXT — WV, &

Since V(h, k7)*/ g(K%/NZ) > CM? > 0, using iterated expectations we conclude that
Y E., [)(Tlt(h, KT)4] = 0(1) where the convergence is uniform over . m]
Lemma 6. Under the conditions of Lemma 2,
2 X2E () = B [ X260 160 [{0, 5.0
~ (T — h)g(x3/N) Pe;

Proof. The proof is analogous to that of Lemma 4. We will show that for a constant
V independent of «, Vary,. (ZtT:l X7E,(h, k1)) g(KT/N)) V(T — h). By iterated
expectations and Chebyshev’s inequality it will follow that, for any ¢ > 0,

1%
>l ————>0
J ez(T—h)

i X7 & (h, k7) = En, | X261 1))
= (T = h)g(x}/N)

We can write

[S¢]

N S
X;&i(h, xr) = Z L(MBeX, Xy e + Z VeXiZiin-c WT Z Z $:0; XUy
=0

=1 ¢=0
00 N o
Kr
= Z XiXpin-e t Z CeXiZpin-ct N Z Z i Xt - (B.4)
=0 i=1 (=0
=g/ VNI, =8(cr/ VN)Cy, =stier/ VNG,

for some coefficients {b,, c,, {d;,}}Y,} that depend on {0;,5,}Y, (and k). By Assumption

3(iv), we have |b|, |c/l, |d;| < C, almost surely for some positive finite constants C,
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such that C = ¥ ;2; C, < co. Note that the coefficients, constants and variables (, ,,
Cy4r Cs, are different from the ones in the proof of Lemma 4.

Consider the variance

Vary,..
t=1 =1

- X&)’ | Ny
et o o T
Z oy Y Tult,7)

where (omitting the dependence on &, x; and {0;,s,}Y,)

2 2 2 5
y(t, ) = Cov NRT(XfEt(h'Kﬁ XTéf(h,KT))'

$(er/ VN) * glier/ V)
As in the proof of Lemma 4, we expand the square of X7&,(h, k7)* to express T';(t, T)
as the sum of covariances I'r ¢ i (£, 7) = CovN,KT(Ck],tCkzlt, Chy r Ckm) wherek,, ky, ks, ky

range over the three terms in (B.4). If k; = k;, I'rc 1., (£, 7) can only be non-zero if
ky = ky, while if k; # k,, only if either k; = ky; and k, = k, or k; = k, and k, = k;. Then,

|FT(t T) = Z Z Z Z| Tk, (E T)|

,=1 k=1 k=1

33
- Z Z| T kykaks (E T + ZZ Z |er1k2k1k2( T)| (B.5)

k=1 ky=1 k=1 ky=1

By calculations similar to that of Lemma 4, for any k;, k,, k; € {1,2,3},

T-h T-h

T kot (£ )| < 6CH(K + 2Mg) X (T = h),
t=1 7=1
T-h T-h

T ki, (£ )| < 6CH(K + 2My) X (T = h).
t=1 =1

We therefore arrive at
T T
Z Z T (t,7) < V(T -h),
t=1 7=1

with V = 27 x 6C*(K + 2M8) independent of x; (27 is the number of terms in (B.5)).
Hence, {(T - h)g(c/N)} " Ty (X786, x1)” = En, [ X7&,(h,10)%]) = op, (D). 0
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Lemma 7. Under the conditions of Lemma 2,

(N R £, () - X,&(h, KT)]z p

> 0.
=1 (T - h)g(KT/N) PKT
Proof. We begin by writing
2a(h) = 8;(X, = X,(h),  X,(h) = Xo(h) + fii(h) x,(h), (B.6)

with X, (h), fix(h) and %,(h) = (X,_; =X, (h), ..., X,_,— X, (h))" as in the proof of Lemma
3. As argued, Xo(h) = Op_((T—h)™"?)and fix(h) = Op_((T - h)™").
Next, we write 7i(h)' Wy, = 1) ,(h) + f1x (1) %,(h)$; and 11y, = (B, - - - Bijap)” SO that

p
éit(h) — &y(h, xr) = (#i = flo(h) + Z ﬁi,h+{’X€(h)] + (B — E(h)gi)Xt + (M — Nx(M)3) %, (h)
(=1

and we note

By ) & (%, = Zo) (% = Ko | & (X, = Kol

(ﬁx(h)] Z %,(h) %(h) ] Z xt(m Yo
_ E(h)] Z’:(x Xo<h>][x Xoaz)] TZ(&—XO@] &, xp)
ixm) |G xm %(h) x5 JNTEE 8

where ¥, = (T2, )7 £, 8,0 and fx(0) = (ZX, 87 T, 8y, Since the least
squares denominator matrix when scaled by (T — )™ converges to E [Xf] X1, in

probability uniformly over «, the calculations in Lemma 3 imply that

N YN, z)(ﬁ(h) ) _ i
T-h ,
g(kr/ VN PKT(( ) )
NTYN, é?)(ﬁxaz) — fix(h)) 1
=0 T-h )

Because W, includes unit effects, Y, () (R, (M) — i + X, Binse X (M) = 0 and,

N

N
N- 1Zflt<h)<5,t<h> Eulh, 7)) = [N 12 ] (B) = B)X,(X, = X,()

i=
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N
* (N ") SZJ (fix () = Ax (M) ()X, = X(h)).  (B7)

i=1

To prove the Lemma, add and subtract N~ YN 2, (h)&,,(h, k7) within the squares
and use Loeve’s inequality to obtain

Ti (N7, £,008400) = X&)
= (T — h)g(x7/N)

< 2D¥,2(h1 KT) + ZDg",z(h/ KT)/

where

TZ_';: [N_l Zﬁl(SAiXt — % () Ei(h, KT)]Z

D7, (h, = T '
T,2( KT) =1 ( h)g(K%/N)
T-h Z\]_1 Z I\l xA't h Ait h it h’ 2
D%z(h, KT) 2 [ i=1 1( )(5 ( ) 5 ( KT))] )

= (T - h)g(x7/N)

Inserting (B.6) into the first term and using Loeve’s inequality,

T-h 2 T-h 1= 2
2 D1 Et(hIZKT) + ”ﬁ)((h)”z I ”xt(h)ét(zhr Kol
(T - h)g(x7/N) (T — h)g(k7/N)

where || - || is Euclidean norm. From calculations similar to those in Lemma 3,
—h _
1 1% ()& eI

L &l kr)® ¥
T-ngeany eV T gy O

D ?,z(hr Kr) <2 |Xo(h)

which allows us to conclude that D7, (h, k1) = opKT(l).

Inserting (B.7) into the second term and using Loeve’s inequality,

(N S 8B - ﬁ(h»]z XK = K0
D! (h,xy) <2 l
el = [( g0er/ VN) r=h
. H((N-l L1t ) — ﬁx<h>>)H2 Lo 15 ()X, = K0P |
g(KT/ \/N) T—h

Under Assumption 3(i), we can show that (T - h)™! Zth_lh X2(X, - X,(h))* = Op (1)
kT
and (T ~ 1) L5 ()X, = XMW)IF = Op_(1). Thus, D],(h,k7) = 0p_(1). O
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Proposition 2

Parts (A), (B) and (C) of the proof of Proposition 2 in Appendix A are established in
Lemmas 8, 9 and 10 below. The argument closely resembles the proof of Proposition
1 and, therefore, in order to conserve space we only sketch the steps. Again, we

adopt Assumptions 1, 2 and 3, we fix p and assume h/T < ¢ <1asT,N — oo.
Lemma 8 (Asymptotic normality of the score).
Lo X&)
\/(T —hp)V(hy, k) P

Proof. The proof given for Lemma 1 goes through with the following adjustment:

N, 1).

we can remove the terms f,, 7, 6;, from Ey ,(h, k) whenever ¢ > h. That is, we set

N
_ K A
Tnlet N Z Siéz‘huit:| :
=1

The calculations in Lemmas 4 and 5 apply with the same adjustment. In Lemma
4,V <75 x 6C*(K + 2Mg)/(1 — ¢), which does not depend on «; or hy. Similarly,
in Lemma 5, ¥, Ey [)(T,t(hT, KT)4] < 9M,C?/(1 — ¢)°CM*T, which tends to zero as

T — oo uniformly over x; and hy. m]

h
Bl )= Y Wt =2 1p, X+ W< T - h)
=1

Lemma 9 (Consistency of the standard error).

V(hy) p
V(hr,xr) P

K T

Proof. The proofs of Lemma 2 and auxiliary Lemma 6 go through without change.
To establish the equivalent to Lemma 7 in this context, define %,(h;) as in its proof
and let 7,,(hy) = (?i,t_l(hT), e, Yi,t_p(hT)) with Yz‘,t— ((h7) the residual from regressing

g(KT)_lYl-rt_ ¢, on unit and time effects. We can write
ft(hy) Wy = 8, Xo(hy) + 8ifty(hy) %, (hy) + fty(hr) Gy (hy),
N(hr) Wy = 1o i(hr) + 8if1x (hy) %, (hy) + Ay (hy) iy (hy).

Scaling Y;, , by g(x7) " leaves the least square predictions 7 (l;)' W, and Ai(hy) W,
unchanged, but it helps bound them in probability uniformly over x.
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Calculations similar to those in Lemma 3 deliver

Xo(hz)

fix(hy) | = Op,_((T=hp)™"?),

fty(fr)

[ B = B ( |

g(—T) (x(hr) = () | = Op, (T =h)™'?),
I ) = )

where fix(hy) = (By(hy), ..., Bp(hT))/ and 7jy(hy) = g(kr)(Ay(hy), .. '/Ap(hT))/ with
A,(h) and B,(h) as defined in the proof of Proposition 2 in Appendix A.

The rest of the proof follows the steps of Lemma 7. The convergence is uniform
in both x; and hy because T — hy < (1 — )T with ¢ < 1. O

Lemma 10 (Negligibility of the remainder).

Ry(hy, k7) %’ 0.
kT

Proof. We begin by defining X,(h;) and 7;(h) as in Lemma 9, by writing
fi(hr) Wiy = §Xo(hr) + 87ty (hr) %, (hy) + Tty (hr) iy (hy),
and by noting again that

Xy(7)
fix(hr) | = Op, (T =hp)™'?).
fry (r)

Next, we write r;,(hr) = (By, — B(h)$) X, + L.)_, (Bi(h) — B,(1)3)X,_, and

Xolhr) Doy " Exllin w0)  fixllny)’ B0 %) €y, )

Ry(hy, xr) = =
\/(T — hy)V(hy, x7) \/(T = hp)V(hy, x7)
Ay (i) T " Tl ralg) + i, wer)
N \/(T — h)V(hr, x7)
The rest of the argument mimics the proof of Lemma 3. O
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Proposition 3

Parts (A), (B) and (C) of the proof of Proposition 3 in Appendix A are stated in
Lemmas 11, 12 and 13 below. The proofs are virtually identical to their counterparts
in Proposition 1 with some minor differences. Here we make Assumptions 4 and
wehold hand p > h fixed as T,N — oo.

Lemma 11 (Asymptotic normality of the score).

YOAXE M k) 4
VT -WAV(h,x)A Py

N(0, 1).

Proof. The arguments given for Lemma 1 and auxiliary Lemmas 4 and 5 apply with

the obvious change in notation. m|
Lemma 12 (Consistency of the standard error and OLS denominator).

A VY (h)A p
AV(h,1p)A

1 and JV(h) % J.

T xr

Proof. The first part follows from arguments analogous to those given for Lemma
2 and auxiliary Lemmas 6 and 7 (with obvious notational changes). For the second
part, note Vary (th(t> < V/(T — h) for some constant V independent of x; under
Assumption 4(ii), so that || V) -7 H = OPKT(l) follows from iterated expectations

and Chebyshev’s inequality. m|

Lemma 13 (Negligibility of the remainder).

Ry(h, k7)) ——> 0.

K T

Proof. For any A # 0,,1)x, by the same calculations as in Lemma 3,

T—=h 37~ T-h
4 A'X _ h,
= AX o ((T—h)‘”z) and Lo & xp) 0, (1).
(T -h) “r V(T = )A'V(h, x7)A T
Since JV(h) = J + Op_ (1) by the second part of Lemma 12, the result follows. O
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C Details of simulation study

Here we complement Section 4 with additional details. First, we describe how we
simulate the heterogeneity. Second, we specify the calibration of our DGPs. Third

and last, we present further simulation results.

Simulation of observable and unobservable heterogeneity. A primary feature is

the correlation between s; and {8;,7,.0;}.” We begin by drawing the vector

(si) Sy,ir 55,1')/ ~ N (L, (1= p)3 + plsys)

for some p # 0. Next, we set a very large L and compute

Bie = Si,gif/ Yie =5,Vier 0 = 56,1'51'6’1

where {8, V., 51-5}%:0 are obtained by (a) drawing the roots of ARMA polynomials
from Beta distributions, (b) computing their MA(e0) representations, (c) truncating
them at L, and (d) normalizing them so that Z%:o B = ZE:O 7% = ZE:O 5 =11

To generate time-varying heterogeneity we set s;, = s; + C;; with (;, ~ N(0, 1), i.i.d.
over units and time, and independent of s; and everything else. This ensures s;
remains exogenous with respect to aggregate and idiosyncratic shocks.

Finally, in the VAR DGP, we set

By =sBy, Cip= Syir Dig = Ss

where {BM}%:O are obtained in the same way as {ﬁuig}fgzo above.
Our method does not satisfy Assumption 3(iv), although responses are bounded

with sufficiently high probability that it does not seem to make a difference.

*Instead, y; (and m; in the VAR setup) does not play a big role and we simply draw it as N(0, 1).

*The advantage of this representation is that it separates the scale and persistence. For example, if
2

. . . . . . o L . L .
X, is white noise with unit variance conditional on {B;.},-,, the variance of }.;_ BisX;_; is Y7o iz = i
while the ratio of long-run variance to variance of ¥.;_, B;;X,_ (a measure of persistence) is

(ZEoe)  (Zhof)

L 2 L 5
Yi=o Bir Yi=0Bi

which does not depend on s;.
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DGP calibration. In the general DGP, we set p = 0.5, and generate {f,, i, 5if}%=0
from ARMA(4, 2) processes with expected roots (0.7,0.3,0.2,0.1) and (0, 0) for f;,
(0.7,0.2,0.1,-0.2) and (0.2,-0.2) for ,, and (0.9,0.3,0.1,0.1) and (0.5,0.2) for &,.
We draw each root as Beta(Av, (1 - A)v) where A is the mean listed above and v = 10,
and we truncate polynomials at L = 2T lags.

In the LP-IV case, we use a similar method for {b,, cg}gzo. We obtain b, from an
ARMAC(1, 1) with roots 0.3 and —0.2, and ¢, from an ARMA(2, 2) with roots (0.4, 0.2)
and (0.1, -0.1). We also set a, = 10 to be safely above standard weak IV thresholds.

Finally, for the VAR DGP, we draw {Bif}’gzo from an MA(2) with roots (0.8, —0.5)
and v = 10, and we set {Ag}rgzjL to an AR(2) with roots (1 —5/T,0.5).

The mean and quantiles of responses for each horizon can be seen in Figure C.1.

(a) General DGP. g, (b) General DGP. y,, (c) General DGP. 9y,

14 2 2
12 90% 90% 90%
. 70% 15 70% 1.5 70%
50% 50% 50%

—Median —Median
—-Mean

-0.2
-0.4 -0.5 -0.5
0

5 10 15 20 0 5 10 15 20 0 5 10 15 20
¢ ¢ L
(d) VAR DGP. B;, (e) VAR DGP. y,, (f) VAR DGP. 6,
3 5 5
2.5 90% 4 90% 4 90%
70% 70% 70%
2 50% 50% 3 50%
3 —Median —Median
—‘Mean —‘Mean
2 25
2 3
1 1
0 0
0.5 1 1
1 -2 2
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
L 14 14

FIGURE C.1. Distributions of impulse responses across ¢ for general and VAR DGPs.
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Additional results. Figure C.2 presents coverage rates of 90% confidence intervals
in the general DGP with T = 100 for panel LPs on X, (panels (a)-to-(c)) and on s; X,
(panels (d)-to-(f)).” As mentioned in the papet, the estimands are different: LPs on

X, recover the mean impulse response while LPs on s;, X, recover their projection on

s;. Yet, the observations we made about inference from Section 4 are unchanged.

In particular, --LAHR inference dominates all the alternatives in delivering correct

coverage for the nonparametric panel local projection estimand.

(a) LP on X,. R*(x) = 0.99

(b) LP on X,. R*(x) = 0.66 (c) LP on X,. R%(x) = 0.33

‘ 1
09 o S 09 e .srz-% 0.9 s —
— 08 —0.8F —~ 0.8 B
O O O
R0.7 W t-HR R0.7 R0.7
206 <2W  tLAHR| | 3 (T e T e T S
S DK98 =t-HAR S c
205 205 205
- - —
$0.4 $0.4 $0.4
203 203 %’ 0.3
“024e, o2 W cor 1102 W GHR
o1 B T B ~2W +tLAHR | ~2W  +t-LAHR
: : DK98 —t-HAR : DK98 —t-HAR
0 0 0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
h h h
5 52 52
(d) LP on 5;,X;. R*(x) = 0.99 (e) LP on s;X,. R°(x) = 0.66 (f) LP on's;,X,. R°(x) = 0.33
1 l 1 1
[0 L} " >t St -
0. }h.__—b’”e_,,....._».“_.._maj 0.9 i == 09 o~ .o o o8 msten ot
— 0.8 e 0.8 e iimseeeme e —0.8
5 5 T )
§ 0.7 ;\x :_EI:HR § 0.7 § 0.7
0. - T 0. 0.6
'*E 6 DK98 —t-HAR '*E 6 '*E
5 0.5 5 0.5 5 0.5
$0.4 %04 $0.4
2035, 203 203
Qo Hrmmmeemm=rss : o2 W cor <02 W GHR
01 01 ~2W “+tLAHR|| o, ~2W  +t-LAHR
‘ ‘ DK98 —-HAR : DK98 —-HAR
0 0 0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
h h h

FIGURE C.2. Coverage rates of 90% confidence intervals for T = 100.

Note: 1W refers to one-way (unit-level) clustering, 2W to two-way clustering, DK98 to Driscoll-Kraay,

and t-HR/t-LAHR/t-HAR to the time-level clustering approaches discussed in the text.

>For panel LPs on X, time effects are excluded from the vector of controls. Otherwise, the estimation
and inference procedures are the same as in Figure 1 in the paper.
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D A survey of empirical applications

Below, we survey relevant empirical applications by the method used to calculate
standard errors. The list reflects the recent surge in applications (with the oldest
paper dated 2018) and includes both published work and working papers. We
have aimed to make the list comprehensive, but it is possible that some might
have been inadvertently omitted. When different methods were used, we favored
the one used in the main specification and the one used in estimation of dynamic
effects (non-zero horizons). We classified as one-way clustering (within units)
applications that cluster at a higher level of aggregation than primary units; say,
at the industry (or industry-time) level when units are firms. While allowing for
sector-level shocks, these still rule out economy-wide spatial dependence. See the

Introduction for additional details.

By method

Two-way clustering Ippolito, Ozdagli, and Perez-Orive (2018), Jeenas (2019), Ottonello and

(within units and time) Winberry (2020), Amberg, Jansson, Klein, and Rogantini Picco (2022),
Palazzo and Yamarthy (2022), Paz (2022), Bellifemine, Couturier, and
Jamilov (2023), Cascaldi-Garcia, Vukoti¢, and Zubairy (2023), Drechsel
(2023), Durante, Ferrando, and Vermeulen (2022), Duval, Furceri, Lee, and
Tavares (2023), Ferreira, Ostry, and Rogers (2023), Gonzdlez, Nufio, Thaler,
and Albrizio (2023), Lakdawala and Moreland (2023), Singh, Suda, and Zer-
vou (2023), Thiirwéchter (2023), Zhou (2023), Anderson and Cesa-Bianchi
(2024), Berthold, Cesa-Bianchi, Di Pace, and Haberis (2024), Caglio, Darst,
and Kalemli-Ozcan (2024), Camélo (2024), Gulyas, Meier, and Ryzhenkov
(2024), Paranhos (2024), Lakdawala and Moreland (forthcoming)

Clustering within units Wu (2018), Ozdagli (2018), Crouzet and Mehrotra (2020), Singh, Suda, and
Zervou (2022), Albrizio, Gonzalez, and Khametshin (2023), Andersen, Jo-
hannesen, Jorgensen, and Peydré (2023), Camara and Ramirez Venegas
(2023), Ghomi (2023), Indarte (2023), Bard6czy, Bornstein, Maggi, and Sal-
gado (2024), Jeenas (2024), Jeenas and Lagos (2024), Lo Duca, Moccero, and
Parlapiano (2024), Paranhos (2024), Ruzzier (2024)

Driscoll and Kraay (1998) Holm, Paul, and Tischbirek (2021), Bahaj, Foulis, Pinter, and Surico (2022),

standard errors Cloyne, Ferreira, Froemel, and Surico (2023), Fagereng, Gulbrandsen,
Holm, and Natvik (2023), Gorea, Kryvtsov, and Kudlyak (2023), Bilal and
Kénzig (2024), Cao, Hegna, Holm, Juelsrud, Konig, and Riiser (2024)

Clustering within time Giirkaynak, Karasoy-Can, and Lee (2022)
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