Micro responses to macro shocks

Martín Almuzara¹ Víctor Sancibrián²

¹Federal Reserve Bank of New York

²CEMFI

NBER Summer Institute
Forecasting and Empirical Methods

July 10, 2024

Motivation

- Estimates of transmission of aggregate shocks to individual outcomes are key objects.
- Panel local projection (LP) at horizon h:

$$Y_{i,t+h} = \beta(h)s_iX_t + \text{controls} + \xi_{it}(h)$$

with micro outcome Y_{it} , macro shock X_t and micro covariate $s_i \implies$ least squares $\hat{\beta}(h)$.

- → Ottonello, Winberry (2020)
 - Y = firm-level investment
 - X = monetary policy shock,
 - s = leverage/distance to default

- → Holm, Paul, Tibshirek (2021)
 - *Y* = household income/spending,
 - X = monetary policy shock,
 - s =liquid assets indicator.

• Despite a lot of progress in time series, little is known about the panel data case.

This paper

- **1** What is $\hat{\beta}(h)$ estimating?
- 2 How to compute standard errors/confidence intervals?
- We study these questions in a general setup:
 - Observed and unobserved, macro and micro shocks.
 - Heterogeneous, dynamic transmission.

$$\Rightarrow Y_{it} = \mu_i + \sum_{\ell=0}^{\infty} \beta_{i\ell} X_{t-\ell} + v_{it}$$

- Macro shock of interest X is observed.
 - Can be relaxed under finite-order VAR or LP-IV assumptions.
- We allow for DGPs with potentially low macro-micro signal-noise.

- **1** Estimand of $\hat{\beta}(h)$.
 - Population projection of impulse response β_{ih} on s_i :

$$eta(h) = rac{\mathsf{Cov}(s_i, eta_{ih})}{\mathsf{Var}(s_i)}.$$

Nonparametric in the sense of permitting unrestricted unobserved heterogeneity.

- Panel LP inference.
 - Clustering on *t*, not on *i*. It's not necessary.
 - Lags + heteroskedasticity-robust or HAR inference.
 - → Connection with a synthetic time series of sample regression coefficients.

Uniform validity over DGPs with different macro-micro signal-noise.

Empirical relevance

- Disagreement in the choice of standard errors in applied work. In our review of almost 50 recent empirical papers:
 - (i, t)-clustering (two-way) $\approx 50\%$
 - *i*-clustering (within units) \approx 33%
 - Driscoll, Kraay (1998) ≈ 15%
- Instead, our recommendation:
 - Time clustering + lags + heteroskedasticity robust standard errors
 - Small-sample refinements if T is small; Imbens, Kolesár (2016)
 - Inference is simple and robust to the pervasiveness of micro variation.

Literature

- Time series literature on local projections. Jordà (2005), Stock, Watson (2018), Montiel Olea, Plagborg-Møller (2021), Xu (2023) ...
- Estimation and inference with aggregate shocks. Hahn, Kuersteiner, Mazzocco (2020), Arkhangelsky, Korovkin (2023), Majerovitz, Sastry (2023)
- Models with cross-sectional dependence. Driscoll, Kraay (1998), Andrews (2005), Pesaran (2006), Gonçalves (2011)
- This paper: panel data + aggregate shocks + robustness to macro signal strength

Outline

1 Introduction

2 Panel local projections

3 Empirical illustration

4 Conclusion

Panel local projections

Model: setup

General DGP:

$$egin{aligned} Y_{it} &= \mu_i + \sum_{\ell=0}^\infty eta_{i\ell} X_{t-\ell} + v_{it}, & t = 1, ..., T, \quad i = 1, ..., N, \ v_{it} &= \sum_{\ell=0}^\infty \gamma_{i\ell} Z_{t-\ell} + \kappa \sum_{\ell=0}^\infty \delta_{i\ell} u_{i,t-\ell}. \end{aligned}$$

- Macro errors Z and micro errors u (serially uncorrelated).
- Unobserved heterogeneity $\theta_i = \{\mu_i, \{\beta_{i\ell}\}_{\ell}, \{\gamma_{i\ell}\}_{\ell}, \{\delta_{i\ell}\}_{\ell}\}.$
 - Micro-macro Wold representation, more flexible than VAR.
- Macro-micro signal noise κ .
 - We consider a range of DGPs P_{κ} where κ might grow as $N \to \infty$.

Model: setup

• R²'s of aggregate shocks:

$$ar{R}^2 = 1 - rac{\mathsf{Var}ig(ar{Y}_tig|\{X_ au,Z_ au\},\{ heta_i\}ig)}{\mathsf{Var}ig(ar{Y}_tig|\{ heta_i\}ig)} = 1 - Oigg(rac{\kappa^2}{N}igg)$$
 ,

with
$$\bar{Y}_t = N^{-1} \sum_{i=1}^N Y_{it}$$
.

- High-signal case ⇒ κ fixed, \$\bar{R}^2 \approx 1\$.
 Moderate-signal case ⇒ κ α √N, \$\bar{R}^2 \in (0,1)\$.
- Low-signal case $\implies \kappa \gg \sqrt{N}$. $\bar{R}^2 \approx 0$.
- But... κ is not estimable.
- Object of interest. Features of the distribution of $\{\beta_{ik}\}$.

Model: assumptions

Assumption: stationarity and iidness

 $\{X_t, Z_t, \{u_{it}\}_i\}$ stationary given $\{\theta_i, s_i\}_i$. $\{\theta_i, s_i, \{u_{it}\}\}_i$ i.i.d. over i given $\{X_t, Z_t\}$.

Assumption: shocks and mean independence

$$\begin{split} &E\left[X_{t}|\{X_{\tau}\}_{\tau\neq t}, \{Z_{\tau}, \{u_{i\tau}\}_{i}\}, \{\theta_{i}, s_{i}\}_{i}\right] = 0.\\ &E\left[Z_{t}|\{Z_{\tau}\}_{\tau\neq t}, \{X_{\tau}, \{u_{i\tau}\}_{i}\}, \{\theta_{i}, s_{i}\}_{i}\right] = 0.\\ &E\left[u_{it}|\{u_{i\tau}\}_{\tau\neq t}, \{X_{\tau}, Z_{\tau}\}, \theta_{i}, s_{i}\right] = 0. \end{split}$$

$$E[Z_t|\{Z_\tau\}_{\tau\neq t},\{X_\tau,\{u_{i\tau}\}_i\},\{\theta_i,s_i\}_i]=0.$$

$$E\left[u_{it}\big|\{u_{i\tau}\}_{\tau\neq t},\{X_{\tau},Z_{\tau}\},\theta_{i},s_{i}\right]=0.$$

Regularity cond's: decay of β , γ , δ + moments of X, Z, u + summability of squares

Panel local projections: estimator

Panel LP at horizon h with p lags + unit and time FEs:

$$Y_{i,t+h} = \hat{\beta}(h)s_{i}X_{t} + \sum_{\ell=1}^{p} \hat{\varphi}_{j}(h)s_{i}X_{t-\ell} + \hat{\mu}_{i}(h) + \hat{\nu}_{t}(h) + \hat{\xi}_{it}(h)$$

$$= \hat{\beta}(h)\hat{s}_{i}\hat{X}_{t} + \sum_{\ell=1}^{p} \tilde{\varphi}_{j}(h)s_{i}X_{t-\ell} + \tilde{\mu}_{i}(h) + \tilde{\nu}_{t}(h) + \hat{\xi}_{it}(h)$$

with \hat{X}_t = residual from regressing X_t on $1, X_{t-1}, ..., X_{t-p}$ and $\hat{s}_i = s_i - N^{-1} \sum_{j=1}^{N} s_j$.

- Can include additional macro and micro controls.
- Easy to extend to unbalanced panels and time-varying s.

Panel local projections: inference

Confidence interval based on sandwich formula for standard errors:

$$\hat{C}_{\alpha}(h) = \left[\hat{\beta}(h) \pm z_{1-\alpha/2}\hat{\sigma}(h)\right], \qquad \hat{\sigma}(h) = \sqrt{\frac{\hat{V}(h)}{(T-h-p)\hat{G}^2}}$$

where $\hat{G} = N^{-1}(T - h - p)^{-1} \sum_{i=1}^{N} \sum_{t=p+1}^{T-h} \hat{s}_{i}^{2} \hat{X}_{t}^{2}$ is the OLS denominator.

- Score variance term \hat{V} ... should we cluster on i, t? should we HAC?
- Right choice relies on time clustering: $\hat{V}(h) = \hat{V}_0(h) + 2\sum_{\ell=p+1}^h \hat{V}_{\ell}(h)$,

$$\hat{V}_{\ell}(h) = \frac{1}{N^{2}(T-h-p)} \sum_{t=\ell+p+1}^{T-h} \left(\sum_{i=1}^{N} \hat{s}_{i} \hat{X}_{t} \hat{\xi}_{it}(h) \right) \left(\sum_{i=1}^{N} \hat{s}_{i} \hat{X}_{t-\ell} \hat{\xi}_{i,t-\ell}(h) \right).$$

Main result

- Asymptotics. T, $N_T \to \infty$ with $T/N_T \to 0$ holding h, p fixed.
- Population regression coefficient $\beta(h) = \text{Cov}(s_i, \beta_{ih}) / \text{Var}(s_i)$.

Proposition: estimand and consistency

$$\lim_{T \to \infty} \sup_{\kappa/\sqrt{NT} = o(1)} P_{\kappa}(|\hat{\beta}(h) - \beta(h)| > M) = 0.$$

Proposition: valid inference

$$\lim_{T o\infty}\sup_{\kappa}\left|P_{\kappa}(eta(h)\in\hat{\mathcal{C}}_{lpha}(h))-(1-lpha)
ight|=0.$$

• Proofs use drifting parameter sequences (Andrews, Cheng, Guggenberger (2020)).

Synthetic time series representation

• FWL + orthogonality of $\hat{s}_i \hat{X}_t$ wrt all other controls:

$$\hat{\beta}(h) = \frac{\sum_{t=p+1}^{T-h} \sum_{i=1}^{N} \hat{s}_{i} \hat{X}_{t} Y_{i,t+h}}{\sum_{t=1}^{T-h} \sum_{i=1}^{N} \hat{s}_{i}^{2} \hat{X}_{t}^{2}} = \frac{\sum_{t=p+1}^{T-h} \hat{X}_{t} \hat{Y}_{t}(h)}{\sum_{t=p+1}^{T} \hat{X}_{t}^{2}},$$

where
$$\hat{Y}_t(h) = \left(\sum_{i=1}^N \hat{s}_i Y_{i,t+h}\right) / \left(\sum_{i=1}^N \hat{s}_i^2\right)$$
.

Synthetic residual:

$$\hat{\xi}_{t}(h) = \frac{\sum_{i=1}^{N} \hat{s}_{i} \hat{\xi}_{it}(h)}{\sum_{i=1}^{N} \hat{s}_{i}^{2}} = \hat{Y}_{t}(h) - \left(\hat{\beta}(h) \hat{X}_{t} + \sum_{\ell=1}^{p} \tilde{\varphi}_{\ell}(h) X_{t-\ell} + \tilde{\mu}(h)\right).$$

 $\hat{C}_{\alpha}(h), \hat{\sigma}(h)$ numerically the same as synthetic time series-based CI/SE.

Macro-micro decomposition

Representation of estimation error:

$$\hat{\beta}(h) = \underbrace{\frac{\sum_{i=1}^{N} \hat{s}_{i} \beta_{ih}}{\sum_{i=1}^{N} \hat{s}_{i}^{2}}}_{\beta(h) + o_{p}(N^{-1/2})} + \frac{\sum_{t=p+1}^{T-h} X_{t} \xi_{t}(h)}{E[X_{t}^{2}]} + o_{p}(T^{-1/2})$$

where

$$\xi_t(h) = \left(\sum_{\ell \notin [h,h+p]} \tilde{\beta}_{\ell} X_{t+h-\ell} + \sum_{\ell=0}^{\infty} \tilde{\gamma}_{\ell} Z_{t+h-\ell}\right) + \frac{\kappa}{\sqrt{N}} \left(\frac{\sum_{i=1}^{N} \hat{s}_i \sum_{\ell=0}^{\infty} \delta_{i\ell} u_{i,t+h-\ell}}{\sqrt{N} \mathsf{Var}(s_i)}\right)$$

Nature of estimation error depends on κ . Micro noise non-negligible if $\kappa \propto \sqrt{N}$.

Which inference procedures work?

- Regression score is MA(h) with Cov $(X_t\xi_t(h), X_{t-\ell}\xi_{t-\ell}(h)) = 0$ if $1 \le |\ell| \le p$.
- Moreover, only $Var(X_t \xi_t(h))$ depends on κ/\sqrt{N} .
- Whether a CI works hinges on whether it captures score's sum of autocovariances.
 - Unit-level clustering neglects cross-sectional dependence induced by macro shocks.
 - Driscoll-Kraay is OK in theory. Tricky in practice (kernel + difficulties with HAC).
 - Also estimates a lot of unnecessary autocovariances.
 - \circ Two-way clustering will have some distortion, but not too bad if κ is large.
 - Also unit-level clustering part is redundant.
- One issue with $\hat{\sigma}(h)$ is that it runs into problems if h or p are large.

Heterogeneous VAR model

Heterogeneous VAR DGP:

$$Y_{it} = m_i + \sum_{\ell=1}^{p} A_{i\ell} Y_{i,t-\ell} + \sum_{\ell=0}^{p} B_{i\ell} X_{t-\ell} + C_{i0} Z_t + \kappa D_{i0} u_{it}.$$

Local projection augmented with p lags of $Y_{i,t}$ and s_iX_t .

$$Y_{i,t+h} = \hat{\beta}(h)s_iX_t + \sum_{\ell=1}^{p} \left(\hat{\psi}_{i\ell}(h)Y_{i,t-\ell} + \hat{\varphi}_{\ell}(h)s_iX_{t-\ell}\right) + \hat{\mu}_i(h) + \hat{\nu}_t(h) + \hat{\xi}_{it}(h).$$

- Time-level aggregation of $\hat{\xi}_{it}(h)$ + Eicker-Huber-White works.
 - Dimension reduction when a low-order VAR ($p \ll h$) offers a good approximation.
 - As in Montiel-Olea, Plagborg-Møller (2021), but lags serve another purpose.

Simulation evidence: T = 100, N = 1000

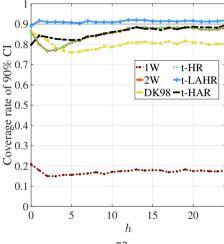


FIGURE. $\bar{R}^2 = 0.99$

Introduction

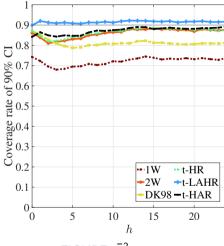


FIGURE. $\bar{R}^2 = 0.66$

Simulation evidence: T = 100, N = 1000

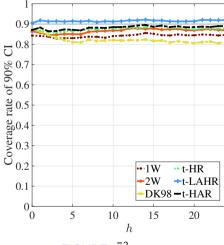
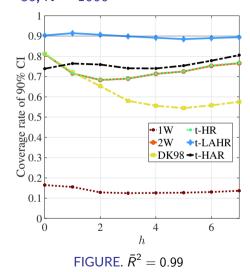
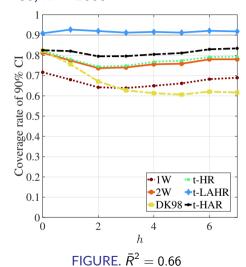


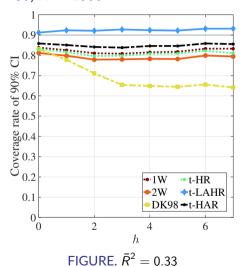
FIGURE. $\bar{R}^2 = 0.33$

Introduction





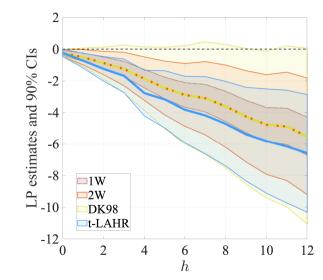
Empirical illustration



Empirical illustration

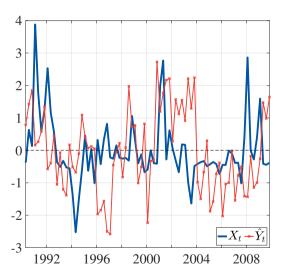
Empirical illustration

Empirical illustration: confidence intervals



Introduction

Empirical illustration: synthetic time series



Introduction

Conclusion

Introduction Panel local projections Empirical illustration Conclusion

Conclusion and practical recommendations

- Explosion of empirical work using panel local projections with aggregate shocks.
- Estimand under unrestricted heterogeneity = population regression.
- Simple inference:
 - Time-level aggregation of residuals + lags + heteroskedasticity-robust SE.
 - Easier to refine in small samples.
 - Remains tractable over moderate horizons if a low-order VAR is reasonable.
 - Seems to perform better in low-signal environments.
- We also study the validity of popular inferential choices.
 - Unit-level clustering is either wrong (one-way) or unnecessary (two-way).
- Extensions.

Thank you!