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Introduction

Motivation

Heterogeneity in transmission of shocks at individual level is key empirical object:

o What is the effect of monetary policy shocks on household consumption and income?
o What role does household heterogeneity play in the transmission mechanism?

Large empirical literature estimates impulse responses using panel local projections:
o Informative about observable heterogeneity.

But what about unobservable heterogeneity?

o Some policies (e.g., tax rebates) may have bigger impacts on certain units depending on
dimensions we do not observe directly/very well (e.g., credit constraints).

Presence of aggregate shocks poses additional challenges.
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Introduction

This paper

e We propose an estimator for the cross-sectional distribution of impulse responses:

o Unit-by-unit estimation of individual responses + aggregation step.
o Aggregation step corrects for noise in individual estimates and does dimension reduction.
o Computationally easy to implement using local projections.

o We study its large-sample properties in a general class of DGPs:
o Macro and micro shocks + unrestricted, heterogeneous dynamics.
= Y=+ Y 00 Xeos+ Vi

e Key. Heterogeneity is low-dimensional linear combination of basis shapes:
= 0, = Bo(h) + B(h)'n; with n; low-dim nonparametric object.

e We then study the impact of monetary policy on workers’ labor income and firm’s
turnover using Spanish admin data.
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Selected literature

¢ Ingredients related to extensive econometric literatures:

o Unit-by-unit estimation: Pesaran, Smith (1995)
o Bias reduction: Jochmans, Weidner (2021)
o Heterogeneity and factor models: Alan, Browning, Ejrnaes (2018)

e Recent papers look at heterogeneity in impulse responses from different angles:
o Huang (2022): discretized (group) heterogeneity

o Chen, Chang, Schorfheide (2022): responses of cross-sectional distributions (no panel data)

= This paper: recovering heterogeneous distribution + panel data + aggregate shocks

Almuzara—Sancibrian Heterogeneity in IRFs 3/24



Unit-by-unit estimation and challenges



Unit-by-unit estimation and challenges

Bias in empirical distributions

e Simple approach is to estimate heterogeneous IRs unit-by-unit and then construct
empirical distribution,

N
Bodls o RO =53 1[6 <4 )
i=1

e In small samples £, tends to be wider than the actual distribution F

e Recently, Jochmans-Weidner (2021) considered the general problem in (1) and showed
that the bias is proportional to Tfl,

E [ﬁ,\,,T(e)} —F(6) = b(Te) +0 (7—3/2) .
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Unit-by-unit estimation and challenges

lllustration

e Jochmans-Weidner (2021) also propose jackknife bias corrections for the distribution and
qguantile function

e The following simulations illustrate how bias correction performs in the context of
impulse responses. Consider the following DGP:

Yit =K+ 00Xt + piYie—1+Eit

o

Xi,t ~ N(O, 1), gi,t ~ N(O, 1)
pi ~ U(0,1),0; 9 = g(n;), n; ~ N(0,1), g is the logistic function

o

o

IRs given by 0, ; = pf790,,- forh>0
o Monte Carlo: 200 samples, N = 1000, T = 20
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Distribution of IRs, horizon 4
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Distribution of IRs, horizon 4
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Distribution of IRs, quantiles 0.25, 0.5 and 0.75
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Distribution of IRs, quantiles 0.25, 0.5 and 0.75
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Setup

e Micro data y;; and an aggregate x, modeled as
Yit} _ [ My, I> < yy.ib yx,i,£> (gi,t—€>
= +
()= ) (s ) (i
In many applications x, is measure of a “shock” (or interaction)
O Xy = VUt

o Interest in 9,‘ = (\UXX’,-VO, \UXX,I',IV ey WXX,I',H)
o Today — this case
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Setup
e Local projection (wo./intercept)
Yiit+h = OniXe + Ui p et

e We introduce dimensionality reduction via a linear factor structure

6, =0(mn)=6+Bnm .
—~— N
(H+1)x1 Dx1

w/factors n, ; independent, ny ; ~ Fy, E[ny;] = 0and Var(n, ;) =1,

E[6;] = Bo.
E[0:6;] = BoBo + BB

e Cross-section distribution P of 6; fully determined by {/sd}f,’zo., {Fd}ﬁ,’:l

Almuzara—Sancibrian Heterogeneity in IRFs

9/24



Introduction Unit-by-unit estimation and challenges Setup and method Empirical application Conclusion

Intuition: D =2
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Intuition: D =2
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Intuition: D =2
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Intuition: D =2
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Intuition: D =2
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Estimation approach

e Conditional independence assumption:

E[Y:T — X76:]6;, X7] = Oty 1

Yi1 X1 0 cee e 0
YiT XT 0 e e 0
Yi2 0 X1 0o ... ... 0
Yir = YiT X = 0 xr—1 0 ... ... 0
YiH+1 0 .. ... ... 0 X1
YiT [ mpxa 0 ... ... ... 0 Xxr_py My x(H41)
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Estimation approach

e Model for heterogeneity:
0;=Bo+mB, ny;~Fy

e Estimation method:
o Steps
@ Estimate {§;}" , unit-by-unit
@ Estimate B, and B (+bias reduction)
® Estimate F, by its empirical distribution function (+bias reduction)

Then form distribution P of 6;
o This is a simple algorithm w/separate parametric/nonparametric problems and reduces to a
set of minimum distance estimators
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Step 2: 5, and B

e Then

@ Estimate B, via pooled local projections A
@ Estimate g via minimum distance given g,

B =argmin||N IZ —Bo) — BB

Q

for some weight matrix Q2 and additional normalizations to disentangle each g, 4
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Steps 3: F,

e Given B, for each i, overidentified GMM/MD problem
. ! A ~
min [ XF (Yir = X7 (Bo+ B) )|,
for some weight matrix W

e F, then estimated by its empirical distributions counterpart,

Fy(n) = %Z 1[Aq; < n]

after imposing the mean and variance normalizations
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Sampling properties

e Mapping from (B, F) to P

P(c) = Pg r(c) = Pgr(6; < c)

://Jil

e We can get an asymptotic expansion

(’3 - P) ~ iﬂ'dﬁ,F ((Bd - ,Bd)> + ind,ﬁ,F </:_d - Fd))
d=0

d=1

D
Bho+ D> Bhaa < Ch] dFy(m)...dFp(np)
d=1
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Sampling properties

e We can learn a lot from this expansion:
@ Separate bias reduction for 8 and F gives bias reduction for P
- Without bias reduction, P has bias of order T~*
® VN(P — P) = a‘“linear combination” of Gaussian processes
- N, T — oo, H, D fixed
- Inference via bootstrap can be justified
- Variance reduction

e Monte Carlo simulation suggests very good small-sample behavior
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Setup and method

N =2000, 7T =50,H =12,D =2: q =0.25

| UBU | UBU+JW | This paper

| Bias /NSE | Bias +/NSE | Bias +/NSE
h=0 [-013 092 |-002 135 | 002 1.33
h=4 |-027 091 |-010 133 |-003 1.00
h=8 | -033 097 |-015 145 |-003 1.03
h=12|-037 097 |-017 151 |-001 099
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Setup and method

N =2000, 7T =50,H =12,D =2: q =0.75

| UBU UBU+JW | This paper
| Bias +/NSE | Bias +/NSE | Bias +/NSE

h=0 | 006 112 |-002 1.69 |-0.14 198
h=4 1012 133 |-001 218 |-005 116
h=8 | 022 112 | 006 162 |-003 1.13
h=12 1030 106 | 012 164 |-0.02 1.40
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Simulation results
Distribution of IRs, quantiles 0.25 and 0.75

2.0 f UBU
—— UBU+deb
sl —— This paper
’ — True
w L0t
&
=]
S)
2 05t
e e ———
0.0 | \
70'5 L
0 3 6 9 12
horizon

Almuzara—Sancibrian Heterogeneity in IRFs 19/24



Introduction Unit-by-unit estimation and challenges Setup and method Empirical application Conclusion

Simulation results
Distribution of IRs, quantiles 0.25 and 0.75
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Monetary policy and labor market outcomes in Spain
e QOutcomes
o Worker's side: labor income and job finding probabilities
- Admin data (MCVL): N = 215, 000
- 2006-2016 (T = 132)
o Firm’s side: turnover (e.g. hiring growth)
- Admin data (PET)
- 2013-2016 (T = 48)
e Variable of interest x; ,

o We use ‘monetary policy surprises’, identified as high-frequency movements in a relevant
interest rate around ECB meeting dates

o E.g., Jarocinski-Karadi (2020) use Overnight Index Swap rates

o Related literature: Holm-Paul-Tishcbirek. (2021), Singh-Suda-Zervou (2021),
Broer-Kramer-Mitman (2021), ...
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Monetary policy surprises (Jarocinski and Karadi, 2020)
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Mean (bps) 0.13
Standard deviation (bps) 3.21
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Aggregate responses

GDP and mon. pol. surprises
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FIGURE. IRFs of the (log) of GDP to a 25 bps shock over the period 2006:1-2016:12; data from
Almgren et al. (forthcoming).
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Distribution of responses
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FIGURE. IRFs of the worker’s income to a 25 bps shock.
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Conclusion

Conclusion

e We propose a method to estimate the distribution of IRs:

Based on model of heterogeneity that imposes common factor-like structure:

o IRs are linear combination of a basis of IR shapes
o Allows us to pool knowledge about IRs at different horizons

Simple implementation:

o After unit-by-unit estimation of researcher’s choice = estimation+bias-reduction of
parametric/nonparametric parts

Sampling properties: bias and variance reduction

Plenty of potential empirical applications:
o Monetary policy/fiscal/oil shocks on household/firm-level data

Thank you!
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