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Motivation

• Heterogeneity in transmission of shocks at individual level is key empirical object:
◦ What is the effect of monetary policy shocks on household consumption and income?
◦ What role does household heterogeneity play in the transmission mechanism?

• Large empirical literature estimates impulse responses using panel local projections:
◦ Informative about observable heterogeneity.

• But what about unobservable heterogeneity?
◦ Some policies (e.g., tax rebates) may have bigger impacts on certain units depending ondimensions we do not observe directly/very well (e.g., credit constraints).

• Presence of aggregate shocks poses additional challenges.
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This paper

• We propose an estimator for the cross-sectional distribution of impulse responses:
◦ Unit-by-unit estimation of individual responses + aggregation step.
◦ Aggregation step corrects for noise in individual estimates and does dimension reduction.
◦ Computationally easy to implement using local projections.

• We study its large-sample properties in a general class of DGPs:
◦ Macro and micro shocks + unrestricted, heterogeneous dynamics.

➡ Yit = —i +
P∞

‘=0 „i‘Xt−‘ + vit

• Key. Heterogeneity is low-dimensional linear combination of basis shapes:
➡ „ih = ˛0(h) + ˛(h)′”i with ”i low-dim nonparametric object.

• We then study the impact of monetary policy on workers’ labor income and firm’sturnover using Spanish admin data.
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Selected literature

• Ingredients related to extensive econometric literatures:
◦ Unit-by-unit estimation: Pesaran, Smith (1995)
◦ Bias reduction: Jochmans, Weidner (2021)
◦ Heterogeneity and factor models: Alan, Browning, Ejrnæs (2018)

• Recent papers look at heterogeneity in impulse responses from different angles:
◦ Huang (2022): discretized (group) heterogeneity
◦ Chen, Chang, Schorfheide (2022): responses of cross-sectional distributions (no panel data)

➡ This paper: recovering heterogeneous distribution + panel data + aggregate shocks
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Bias in empirical distributions

• Simple approach is to estimate heterogeneous IRs unit-by-unit and then constructempirical distribution,
{„̂h;i}

N
i=1 7→ F̂h(„) =

1

N

NX
i=1

1
h
„̂h;i ≤ „

i (1)
• In small samples F̂h tends to be wider than the actual distribution F
• Recently, Jochmans–Weidner (2021) considered the general problem in (1) and showedthat the bias is proportional to T−1,

E
h
F̂N;T („)

i
− F („) =

b(„)

T
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T−3=2

”
:
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Illustration

• Jochmans–Weidner (2021) also propose jackknife bias corrections for the distribution andquantile function
• The following simulations illustrate how bias correction performs in the context ofimpulse responses. Consider the following DGP:

yi ;t = —+ „0;ixi ;t + ȷiyi ;t−1 + "i ;t

◦ xi ;t ∼ N(0; 1), "i ;t ∼ N(0; 1)

◦ ȷi ∼ U(0; 1), „i ;0 = g(”i ); ”i ∼ N(0; 1), g is the logistic function
◦ IRs given by „h;i = ȷhi „0;i for h ≥ 0

◦ Monte Carlo: 200 samples, N = 1000, T = 20
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Setup

• Micro data yi t and an aggregate xt modeled as„
yi t
xt

«
=

„
—y;i
—x

«
+

∞X
‘=0

„
Ψyy;i ;‘ Ψyx;i ;‘

0 Ψxx;‘

«„
"i ;t−‘
flt−‘

«
• In many applications xt is measure of a “shock” (or interaction)

◦ xt = flt
◦ Interest in „i = (Ψxx;i ;0;Ψxx;i ;1; : : : ;Ψxx;i ;H)
◦ Today =⇒ this case
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Setup
• Local projection (wo./intercept)

yi ;t+h = „h;ixt + ui ;h;t+h;

• We introduce dimensionality reduction via a linear factor structure
„i|{z}

(H+1)×1

= „(”i ) = ˛0 + ˛ ”i|{z}
D×1

;

w/factors ”d;i independent, ”d;i ∼ Fd , Eˆ”d;i˜ = 0 and Var`”d;i´ = 1,
E [„i ] = ˛0;

E
ˆ
„i„

′
i

˜
= ˛0˛

′
0 + ˛˛′:

• Cross-section distribution P of „i fully determined by {˛d}
D
d=0., {Fd}Dd=1
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Intuition: D = 2
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Intuition: D = 2

Given ”2 = (0:4; 1:1)′, we have „2 = ˛0 + 0:4˛1 + 1:1˛2
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Intuition: D = 2

Given ”11 = (−0:18;−1:34)′, we have „11 = ˛0 − 0:18˛1 − 1:34˛2
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Estimation approach
• Conditional independence assumption:

E
ˆ
Yi ;T − XT „i

˛̨
„i ; XT

˜
= 0MT×1

Yi ;T =

0BBBBBBBBBBBBBBBBBBBBB@
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yi ;T......
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MT×1
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0BBBBBBBBBBBBBBBBBBBBB@

x1 0 : : : : : : : : : 0... ... ... ... ... ...
xT 0 : : : : : : : : : 0
0 x1 0 : : : : : : 0... ... ... ... ... ...
0 xT−1 0 : : : : : : 0... ... ... ... ... ...... ... ... ... ... ...
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Estimation approach

• Model for heterogeneity:
„i = ˛0 + ”′i˛; ”d;i ∼ Fd

• Estimation method:
◦ Steps

1 Estimate {„̂i}Ni=1 unit-by-unit
2 Estimate ˛0 and ˛ (+bias reduction)
3 Estimate Fd by its empirical distribution function (+bias reduction)

Then form distribution P of „i
◦ This is a simple algorithm w/separate parametric/nonparametric problems and reduces to aset of minimum distance estimators
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Step 2: ˛0 and ˛

• Then
1 Estimate ˛0 via pooled local projections
2 Estimate ˛ via minimum distance given ˆ̨

0

ˆ̨ = argmin
˛

‚‚‚‚‚N−1
NX
i=1

(„̂i − ˆ̨
0)(„̂i − ˆ̨

0)
′ − ˛˛′

‚‚‚‚‚
Ω

for some weight matrix Ω and additional normalizations to disentangle each ˛h;d
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Steps 3: Fd

• Given ˛, for each i , overidentified GMM/MD problem
min
”

‚‚‚X ′
T

“
Yi ;T − XT

“
ˆ̨
0 + ˆ̨”

””‚‚‚
W

for some weight matrix W
• Fd then estimated by its empirical distributions counterpart,

F̂d(”) =
1

N

NX
i=1

1
ˆ
”̂d;i ≤ ”

˜
after imposing the mean and variance normalizations
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Sampling properties

• Mapping from (˛; F ) to P
P (c) = P˛;F (c) = P ˛;F („i ≤ c)

=

Z
· · ·
Z HY

h=0

1

"
˛h;0 +

DX
d=1

˛h;d”d ≤ ch

#
dF1(”1) : : : dFD(”D)

• We can get an asymptotic expansion
“
P̂ − P

”
≈

DX
d=0

ıd;˛;F

“
( ˆ̨d − ˛d)

”
+

DX
d=1

Πd;˛;F

“
F̂d − Fd)

”
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Sampling properties

• We can learn a lot from this expansion:
1 Separate bias reduction for ˆ̨ and F̂ gives bias reduction for P̂

- Without bias reduction, P̂ has bias of order T−1

2 √
N(P̂ − P ) =⇒ a “linear combination” of Gaussian processes

- N; T → ∞, H;D fixed- Inference via bootstrap can be justified- Variance reduction
• Monte Carlo simulation suggests very good small-sample behavior
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N = 2000, T = 50, H = 12, D = 2: q = 0:25

UBU UBU+JW This paper
Bias √

NSE Bias √
NSE Bias √

NSE
h = 0 -0.13 0.92 -0.02 1.35 0.02 1.33
h = 4 -0.27 0.91 -0.10 1.33 -0.03 1.00
h = 8 -0.33 0.97 -0.15 1.45 -0.03 1.03
h = 12 -0.37 0.97 -0.17 1.51 -0.01 0.99
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N = 2000, T = 50, H = 12, D = 2: q = 0:75

UBU UBU+JW This paper
Bias √

NSE Bias √
NSE Bias √

NSE
h = 0 0.06 1.12 -0.02 1.69 -0.14 1.98
h = 4 0.12 1.33 -0.01 2.18 -0.05 1.16
h = 8 0.22 1.12 0.06 1.62 -0.03 1.13
h = 12 0.30 1.06 0.12 1.64 -0.02 1.40
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Simulation results

T = 100
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Simulation results

T = 200
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Monetary policy and labor market outcomes in Spain
• Outcomes

◦ Worker’s side: labor income and job finding probabilities
- Admin data (MCVL): N ≈ 215; 000

- 2006-2016 (T = 132)
◦ Firm’s side: turnover (e.g. hiring growth)

- Admin data (PET)
- 2013-2016 (T = 48)

• Variable of interest xi ;t
◦ We use ‘monetary policy surprises’, identified as high-frequency movements in a relevantinterest rate around ECB meeting dates
◦ E.g., Jarociński–Karadi (2020) use Overnight Index Swap rates

• Related literature: Holm–Paul–Tishcbirek. (2021), Singh–Suda–Zervou (2021),
Broer–Kramer–Mitman (2021), . . .
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Monetary policy surprises (Jarociński and Karadi, 2020)

Mean (bps) 0:13Standard deviation (bps) 3:21
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Aggregate responses

FIGURE. IRFs of the (log) of GDP to a 25 bps shock over the period 2006:1-2016:12; data fromAlmgren et al. (forthcoming).
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Distribution of responses

FIGURE. IRFs of the worker’s income to a 25 bps shock.
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Conclusion
• We propose a method to estimate the distribution of IRs:
• Based on model of heterogeneity that imposes common factor-like structure:

◦ IRs are linear combination of a basis of IR shapes
◦ Allows us to pool knowledge about IRs at different horizons

• Simple implementation:
◦ After unit-by-unit estimation of researcher’s choice =⇒ estimation+bias-reduction ofparametric/nonparametric parts

• Sampling properties: bias and variance reduction
• Plenty of potential empirical applications:

◦ Monetary policy/fiscal/oil shocks on household/firm-level data
Thank you!
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