Heterogeneity in impulse response functions

Martín Almuzara¹ Víctor Sancibrián²

¹Federal Reserve Bank of New York

²CEMFI

October 10, 2024

Disclaimer: The views below are those of the authors and do not necessarily reflect the position of the Federal

Reserve Bank of New York or the Federal Reserve System

Motivation

Introduction

• Heterogeneity in transmission of shocks at individual level is key empirical object:

Setup and method

• What is the effect of monetary policy shocks on household consumption and income?

Empirical application

Conclusion

- What role does household heterogeneity play in the transmission mechanism?
- Large empirical literature estimates impulse responses using panel local projections:
 Informative about observable heterogeneity.
- But what about unobservable heterogeneity?

Unit-by-unit estimation and challenges

- Some policies (e.g., tax rebates) may have bigger impacts on certain units depending on dimensions we do not observe directly/very well (e.g., credit constraints).
- Presence of aggregate shocks poses additional challenges.

This paper

- We propose an estimator for the cross-sectional distribution of impulse responses:
 - Unit-by-unit estimation of individual responses + aggregation step.
 - Aggregation step corrects for noise in individual estimates and does dimension reduction.
 - Computationally easy to implement using local projections.
- We study its large-sample properties in a general class of DGPs:
 - Macro and micro shocks + unrestricted, heterogeneous dynamics.

$$\Rightarrow Y_{it} = \mu_i + \sum_{\ell=0}^{\infty} \theta_{i\ell} X_{t-\ell} + v_{it}$$

• Key. Heterogeneity is low-dimensional linear combination of basis shapes:

•
$$\theta_{ih} = \beta_0(h) + \beta(h)'\eta_i$$
 with η_i low-dim nonparametric object.

• We then study the impact of monetary policy on workers' labor income and firm's turnover using Spanish admin data.

Selected literature

- Ingredients related to extensive econometric literatures:
 - Unit-by-unit estimation: Pesaran, Smith (1995)
 - Bias reduction: Jochmans, Weidner (2021)
 - Heterogeneity and factor models: Alan, Browning, Ejrnæs (2018)
- Recent papers look at heterogeneity in impulse responses from different angles:
 - Huang (2022): discretized (group) heterogeneity
 - Chen, Chang, Schorfheide (2022): responses of cross-sectional distributions (no panel data)

Empirical application

This paper: recovering heterogeneous distribution + panel data + aggregate shocks

Unit-by-unit estimation and challenges

Bias in empirical distributions

• Simple approach is to estimate heterogeneous IRs unit-by-unit and then construct empirical distribution,

$$\{\hat{\theta}_{h,i}\}_{i=1}^{N} \mapsto \hat{F}_{h}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1} \Big[\hat{\theta}_{h,i} \leq \theta \Big]$$
 (1)

- In small samples \hat{F}_h tends to be wider than the actual distribution F
- Recently, Jochmans-Weidner (2021) considered the general problem in (1) and showed that the bias is proportional to T⁻¹,

$$E\left[\hat{F}_{N,T}(\theta)
ight] - F(heta) = rac{oldsymbol{b}(oldsymbol{ heta})}{oldsymbol{T}} + O\left(T^{-3/2}
ight),$$

Illustration

Jochmans-Weidner (2021) also propose jackknife bias corrections for the distribution and • quantile function

Empirical application

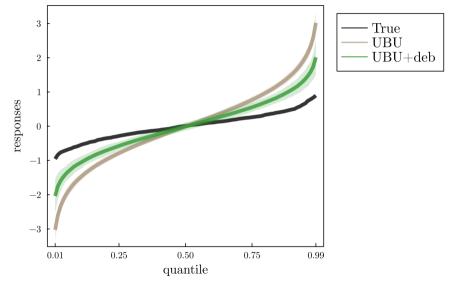
 The following simulations illustrate how bias correction performs in the context of impulse responses. Consider the following DGP:

$$y_{i,t} = \mu + \theta_{0,i} x_{i,t} + \rho_i y_{i,t-1} + \varepsilon_{i,t}$$

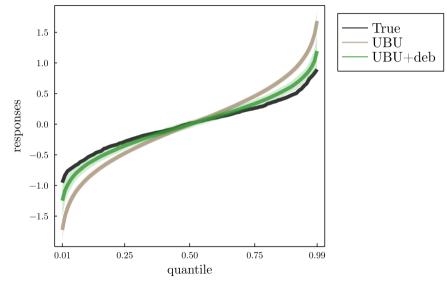
$$\circ \ x_{i,t} \sim N(0,1), \varepsilon_{i,t} \sim N(0,1)$$

- $\rho_i \sim U(0,1), \theta_{i,0} = g(\eta_i), \eta_i \sim N(0,1), g$ is the logistic function
- IRs given by $\theta_{h,i} = \rho_i^h \theta_{0,i}$ for h > 0
- Monte Carlo: 200 samples, N = 1000, T = 200

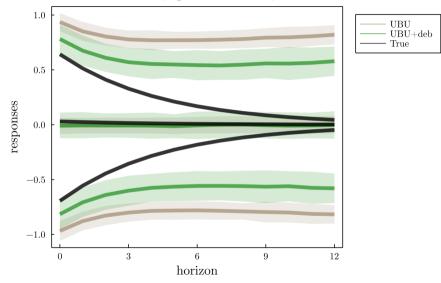
Distribution of IRs, horizon 4



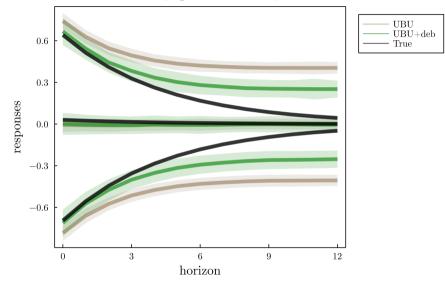
Distribution of IRs, horizon 4



Distribution of IRs, quantiles 0.25, 0.5 and 0.75



Distribution of IRs, quantiles 0.25, 0.5 and 0.75



Setup and method

Setup

• Micro data y_{it} and an aggregate x_t modeled as

$$\begin{pmatrix} y_{it} \\ x_t \end{pmatrix} = \begin{pmatrix} \mu_{y,i} \\ \mu_x \end{pmatrix} + \sum_{\ell=0}^{\infty} \begin{pmatrix} \Psi_{yy,i,\ell} & \Psi_{yx,i,\ell} \\ 0 & \Psi_{xx,\ell} \end{pmatrix} \begin{pmatrix} \varepsilon_{i,t-\ell} \\ v_{t-\ell} \end{pmatrix}$$

Empirical application

- In many applications x_t is measure of a "shock" (or interaction)
 - $x_t = v_t$ • Interest in $\theta_i = (\Psi_{xx,i,0}, \Psi_{xx,i,1}, \dots, \Psi_{xx,i,H})$
 - \circ Today \implies this case

Conclusion

• Local projection (wo./intercept)

$$y_{i,t+h} = \theta_{h,i} x_t + u_{i,h,t+h},$$

• We introduce dimensionality reduction via a linear factor structure

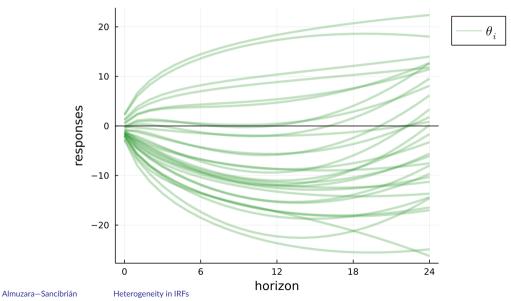
$$\underbrace{ heta_i}_{(H+1) imes 1}= heta(\eta_i)=eta_0+eta_{\underbrace{ extsf{n}}_{D imes 1}},$$

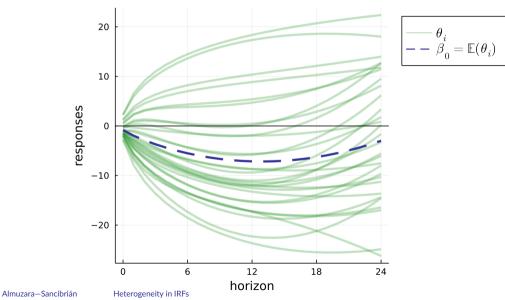
w/factors $\eta_{d,i}$ independent, $\eta_{d,i} \sim F_d$, $E\left[\eta_{d,i}\right] = 0$ and $\mathsf{Var}\left(\eta_{d,i}\right) = 1$,

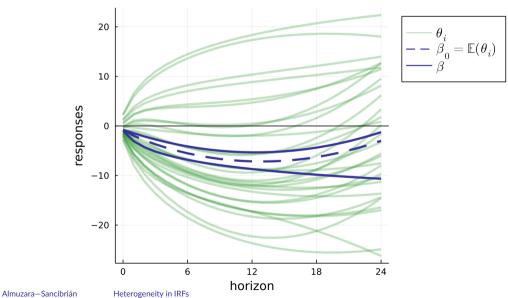
$$egin{aligned} & \mathcal{E}[heta_i] = eta_0, \ & \mathcal{E}\left[heta_i heta_i'
ight] = eta_0 eta_0' + etaeta_0'. \end{aligned}$$

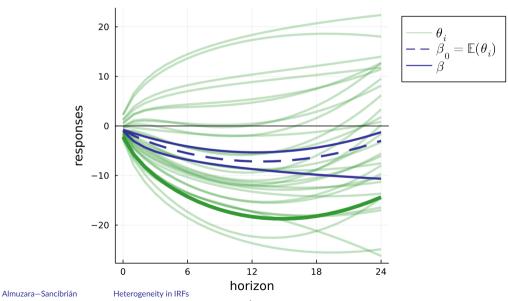
• Cross-section distribution *P* of θ_i fully determined by $\{\beta_d\}_{d=0}^D$, $\{F_d\}_{d=1}^D$

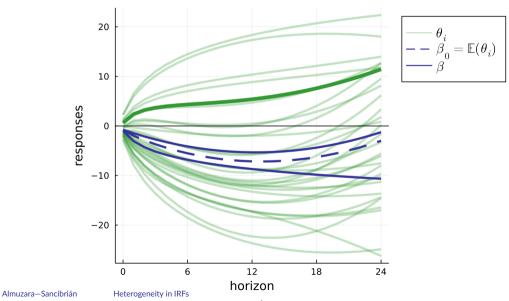
Almuzara–Sancibrián He











Estimation approach

• Conditional independence assumption:

$$E\left[Y_{i,T}-X_{T} heta_{i}ig| heta_{i},X_{T}
ight]=0_{M_{T} imes1}$$

	$\left(\begin{array}{c} y_{i,1} \end{array} \right)$			(x_1)	0				0)	
	÷			÷	÷	÷	÷	÷	÷	
	У _{i,T}			x _T	0				0	
	У _{i,2}			0	x_1	0			0	
	÷			:	÷	÷	÷	÷	÷	
$Y_{i,T} =$	У _{i,T}	x	$\tau =$	0	x_{T-1}	0			0	
,	÷			÷	÷	÷	÷	÷	÷	
	:			:	÷	÷	÷	÷	÷	
	<i>У</i> _{<i>i</i>,<i>H</i>+1}			0				0	<i>x</i> ₁	
	:			:	÷	÷	÷	÷	÷	
	(y _{i,T})	$M_T imes 1$		0 /				0	x_{T-H}	$M_T \times (H+1)$

Estimation approach

• Model for heterogeneity:

$$heta_i = oldsymbol{eta}_0 + \eta_i^\prime oldsymbol{eta}$$
, $\eta_{d,i} \sim oldsymbol{F}_d$

- Estimation method:
 - Steps
 - **1** Estimate $\{\hat{\theta}_i\}_{i=1}^N$ unit-by-unit
 - 2 Estimate β_0 and β (+bias reduction)
 - **3** Estimate F_d by its empirical distribution function (+bias reduction)

Then form distribution *P* of θ_i

• This is a simple algorithm w/separate parametric/nonparametric problems and reduces to a set of minimum distance estimators

Step 2: β_0 and β

• Then

- **1** Estimate β_0 via pooled local projections
- **2** Estimate β via minimum distance given $\hat{\beta}_0$

$$\hat{eta} = rgmin_{eta} \left\| egin{array}{c} N^{-1} \sum_{i=1}^N (\hat{ heta}_i - \hat{eta}_0) (\hat{ heta}_i - \hat{eta}_0)' - etaeta'
ight\|_\Omega \end{array}
ight.$$

for some weight matrix Ω and additional normalizations to disentangle each $\beta_{h,d}$

Steps 3: *F*_d

• Given β , for each *i*, overidentified GMM/MD problem

$$\min_{\eta} \quad \left\| X_{\mathcal{T}}' \left(Y_{i,\mathcal{T}} - X_{\mathcal{T}} \left(\hat{\beta}_0 + \hat{\beta} \eta \right) \right) \right\|_{W}$$

for some weight matrix W

• F_d then estimated by its empirical distributions counterpart,

$$\hat{\mathcal{F}}_d(\eta) = rac{1}{N}\sum_{i=1}^N \mathbb{1}ig[\hat{\eta}_{d,i} \leq \etaig]$$

after imposing the mean and variance normalizations

Sampling properties

• Mapping from (β, F) to P

$$P(c) = P_{\beta,F}(c) = P_{\beta,F}(\theta_i \le c)$$

= $\int \cdots \int \prod_{h=0}^{H} 1 \left[\beta_{h,0} + \sum_{d=1}^{D} \beta_{h,d} \eta_d \le c_h \right] dF_1(\eta_1) \dots dF_D(\eta_D)$

Empirical application

• We can get an asymptotic expansion

$$\left(\hat{P}-P\right) pprox \sum_{d=0}^{D} \pi_{d,\beta,F}\left(\left(\hat{eta}_{d}-eta_{d}
ight)
ight) + \sum_{d=1}^{D} \Pi_{d,\beta,F}\left(\hat{F}_{d}-F_{d}
ight)
ight)$$

Empirical application

Sampling properties

- We can learn a lot from this expansion:
 - **1** Separate bias reduction for $\hat{\beta}$ and \hat{F} gives bias reduction for \hat{P}
 - Without bias reduction, \hat{P} has bias of order T^{-1}
 - **2** $\sqrt{N}(\hat{P} P) \implies$ a "linear combination" of Gaussian processes
 - $N, T \rightarrow \infty, H, D$ fixed
 - Inference via bootstrap can be justified
 - Variance reduction
- Monte Carlo simulation suggests very good small-sample behavior

N = 2000, *T* = 50, *H* = 12, *D* = 2: *q* = 0.25

	U	BU	UBL	J+JM	This paper		
	Bias	\sqrt{N} SE	Bias	\sqrt{N} SE	Bias	\sqrt{N} SE	
h = 0	-0.13	0.92	-0.02	1.35	0.02	1.33	
<i>h</i> = 4	-0.27	0.91	-0.10	1.33	-0.03	1.00	
h = 8	-0.33	0.97	-0.15	1.45	-0.03	1.03	
<i>h</i> = 12	-0.37	0.97	-0.17	1.51	-0.01	0.99	

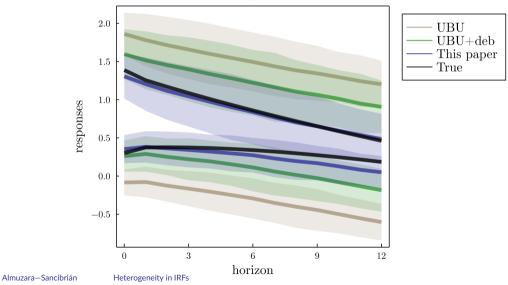
N = 2000, *T* = 50, *H* = 12, *D* = 2: *q* = 0.75

	U	BU	UBU	J+JM	This paper		
	Bias	\sqrt{N} SE	Bias	\sqrt{N} SE	Bias	\sqrt{N} SE	
h = 0	0.06	1.12	-0.02	1.69	-0.14	1.98	
h = 4	0.12	1.33	-0.01	2.18	-0.05	1.16	
h = 8	0.22	1.12	0.06	1.62	-0.03	1.13	
h = 12	0.30	1.06	0.12	1.64	-0.02	1.40	

Empirical application

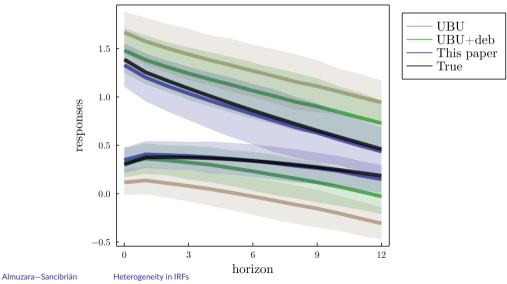
Simulation results

Distribution of IRs, quantiles 0.25 and 0.75



Simulation results

Distribution of IRs, quantiles 0.25 and 0.75



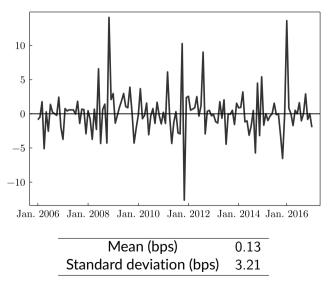
Empirical application

Monetary policy and labor market outcomes in Spain

- Outcomes
 - Worker's side: labor income and job finding probabilities
 - Admin data (MCVL): $N \approx 215,000$
 - 2006-2016 (T = 132)
 - Firm's side: turnover (e.g. hiring growth)
 - Admin data (PET)
 - 2013-2016 (T = 48)
- Variable of interest x_{i,t}
 - We use 'monetary policy surprises', identified as high-frequency movements in a relevant interest rate around ECB meeting dates
 - E.g., Jarociński-Karadi (2020) use Overnight Index Swap rates
- Related literature: Holm-Paul-Tishcbirek. (2021), Singh-Suda-Zervou (2021), Broer-Kramer-Mitman (2021), ...

Almuzara-Sancibrián

Monetary policy surprises (Jarociński and Karadi, 2020)



Empirical application

Aggregate responses

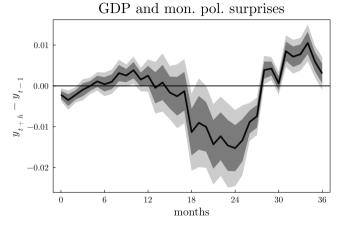


FIGURE. IRFs of the (log) of GDP to a 25 bps shock over the period 2006:1-2016:12; data from Almgren et al. (forthcoming).

Distribution of responses

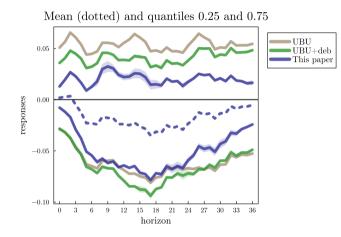


FIGURE. IRFs of the worker's income to a 25 bps shock.

Conclusion

Conclusion

Introduction

- We propose a method to estimate the distribution of IRs:
- Based on model of heterogeneity that imposes common factor-like structure:
 - IRs are linear combination of a basis of IR shapes
 - Allows us to pool knowledge about IRs at different horizons
- Simple implementation:
 - $\circ\,$ After unit-by-unit estimation of researcher's choice $\implies\,$ estimation+bias-reduction of parametric/nonparametric parts
- Sampling properties: bias and variance reduction
- Plenty of potential empirical applications:
 - Monetary policy/fiscal/oil shocks on household/firm-level data

Thank you!

Almuzara-Sancibrián Heterogeneity in IRFs